Gordana Bogdanović
University of Novi Sad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gordana Bogdanović.
Journal of Medicinal Food | 2008
Jasna Čanadanović-Brunet; Gordana Ćetković; Sonja Djilas; Vesna Tumbas; Gordana Bogdanović; Anamarija Mandić; Siniša L. Markov; Dragoljub D. Cvetković; Vladimir Čanadanović
The aromatic herb Melissa officinalis L. can be used as an easily accessible source of natural antioxidants and as a possible food supplement and as a phytochemical. Radical scavenging, antibacterial, and antiproliferative activities of petroleum ether, chloroform, ethyl acetate, n-butanol, and water extracts of M. officinalis L. extracts were investigated. The results of antioxidative activity, obtained by electron spin resonance spectroscopy, confirmed that investigated extracts suppressed the formation of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and lipid peroxyl radicals in all investigated systems in a dose-dependent manner. The maximum DPPH and hydroxyl radical scavenging activities (SA(DPPH) = SA(OH) = 100%) were achieved in the presence of n-butanol extract at concentrations of 0.4 mg/mL and 0.5 mg/mL, respectively. The highest lipid peroxyl scavenging activity (93.20%) was observed at a higher concentration (5 mg/mL) of n-butanol extract in the lipid peroxidation system. The most effective antibacterial activities were expressed by petroleum ether and ethyl acetate extracts on Sarcina lutea. Chloroform extract showed the strongest antiproliferative effect with 50% inhibitory concentration values of 0.09 mg/mL and 0.10 mg/mL for HeLa and MCF-7 cell lines, respectively. The present study demonstrated the high phenolic content and radical scavenging, antibacterial, and antiproliferative activities of extracts of M. officinalis L. originating from Serbia.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2009
Jasminka Mrđanović; Slavica Šolajić; Visnja Bogdanovic; Karmen Stankov; Gordana Bogdanović; Aleksandar Djordjevic
Poly-hydroxylated C(60) fullerenols (C(60)(OH)(n)) have attracted much attention in biomedical research, due to a variety of biological activities. However, the studies investigating the genotoxic effects of fullerenols are still insufficient. The aim of the present study was to analyze the genotoxic and antigenotoxic potential of fullerenol C(60)(OH)(24). The investigation was carried out with mitomycin C (MMC)-treated and control Chinese hamster ovary cells (CHO-K1), using the chromosome aberration (CA) assay and the cytokinesis-block micronucleus (CBMN) test. Cells were treated with fullerenol nanoparticles, which are well known for their antioxidative properties and cytoprotective effects, both in vivo and in vitro. Our study showed the absence of genotoxicity of fullerenol in a wide range of concentrations (11-221 microM). Fullerenol mediated the decrease in the frequency of micronuclei (MN) and chromosome aberrations compared with the controls at all endpoints examined. A dose-dependent decrease of MN frequency was found 24h after treatment with fullerenol, in contrast to the outcome of the CA assay. Cell proliferation was equally influenced by fullerenol. The majority of aberrations were of the chromosome-type. Our results show that fullerenol does not induce genotoxic effects, and that it protects both non-damaged and MMC-damaged CHO-K1 cells.
Chemico-Biological Interactions | 2015
Milica Pešić; Ana Podolski-Renić; Sonja Stojković; Branko Matović; Danica Zmejkoski; Vesna Kojić; Gordana Bogdanović; Aleksandra Pavićević; Miloš Mojović; Aleksandar Savić; Ivana Milenković; Aleksandar Kalauzi; Ksenija Radotić
Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 μM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine.
Steroids | 2008
Evgenija A. Djurendić; Jovana J. Daljev; Marija N. Sakač; Janoš J. Čanadi; Suzana Jovanović Šanta; Silvana A. Andric; Olivera R. Klisurić; Vesna Kojić; Gordana Bogdanović; Maja Djurendić-Brenesel; Sladjana Novaković; Katarina M. Penov Gaši
Steroidal epoxy and/or N-oxy 17-picolyl and 17-picolinylidene-androst-5-ene derivatives have been prepared using 3beta,17beta-dihydroxy-17alpha-picolyl-androst-5-ene (1), 3beta-acetoxy-17-picolinylidene-androst-5-ene (2), and 3beta-hydroxy-17-picolinylidene-androst-5-ene (3) as synthetic precursors. The compounds 2 and/or 3 were reacted with m-chloroperoxybenzoic acid (MCPBA). The compounds synthesized from 2 were 17-picolinylidene-N-oxide 4, 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene-N-oxide 5 and 6, and 5alpha,6alpha:17alpha,20alpha- and 5beta,6beta:17alpha,20alpha-diepoxy-N-oxide 7 and 8. Starting from compound 3, a mixture of 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene 9 and 10, 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene-N-oxide 11 and 12, and 5alpha,6alpha:17alpha,20alpha- and 5beta,6beta:17alpha,20alpha-diepoxy-N-oxide 13 and 14 were obtained. From compounds 15 and 18, obtained from 1 and 3 by the Oppenauer oxidation, the 4alpha,5alpha-epoxy and 4beta,5beta-epoxy derivatives 16, 17 and 20, 21 were prepared by oxidation with 30% H(2)O(2). Oxidation of 18 with MCPBA yielded only the N-oxide 19. The structures of compounds 15 and 18 were proved by the X-ray analysis. Compounds 1-6, 9, 15, 17, 18, and 21 were tested on activity against the enzyme aromatase. Antitumor activity against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER-, MDA-MB-231, and prostate cancer PC3) was evaluated. Three tested compounds (1, 4, and 19) showed strong activity against PC3, the IC(50) values being in the range 0.55-10microM, whereas compound 17 showed strong activity against MDA-MB-231 (IC(50) 10.4microM).
Archive of Oncology | 2008
Aleksandar Djordjevic; Gordana Bogdanović
Chemical modification of fullerenes to hydrosoluble cluster molecules made fullerenes interesting for biological investigation. Among them, polycarbonated and polyhydroxylated fullerene C60 derivatives showed the most interesting biological activities. In this paper, we present the most important recent results of in vitro and in vivo biological studies with fullerenol C60(OH)24. Fullerenol C60(OH)24 was strong antioxidant: it reacted with superoxide anion radical, hydroxy radical and nitrous oxide radical in chemical and biological systems. Fullerenol C60(OH)24 did not inhibit human breast cancer cell growth at concentrations from 0.8 to 3.45 μM, but strongly modulated cytotoxic effects of doxorubicin and cis-platinum after 24 and 48 hours of treatment. Radioprotective effects of fullerenol C60(OH)24 were shown in different in vitro and in vivo models. Fullerenol C60(OH)24 (100 mg/kg) protected rat heart from doxorubicin toxicity. Biodistribution studies of fulelrenol were also investigated. Accumulating data from the literature and from our studies suggest that fullerenol, as a nanoparticle might be a new promising pharmaceutical in the near future.
Steroids | 2008
Evgenija A. Djurendić; Marija N. Sakač; Marina P. Zaviš; Andrea Gaković; Janoš J. Čanadi; Silvana A. Andric; Olivera R. Klisurić; Vesna Kojić; Gordana Bogdanović; Katarina M. Penov Gaši
Starting from the D-homo lactones of androst-4-en-3-one 3 and 4, prepared from 1 and 2, the new 17a homolactones 5-12, 14 and 15, were synthesized. The 4-hydroxy compounds 9 and 10 were obtained through the reaction of 4alpha,5alpha- (5 and 7) and 4beta,5beta- (6 and 8) epoxides with formic acid. The epoxides 5 and 6 were prepared from compound 3, and epoxides 7 and 8 from compound 4 by oxidation with H(2)O(2) under basic conditions. Compound 1 served as a starting substance for obtaining lactones 11-13. Oxidation of compound 1 with m-chloroperbenzoic acid yielded 11 and 12, but compound 13 gave 14. Compound 15 was obtained from 13 by oxidation with H(2)O(2) under basic conditions. The structures of epoxides 6 and 14 were confirmed by X-ray structural analysis. Cytotoxic activity against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER-, MDA-MB-231, and prostate cancer PC3) was evaluated. Compounds 6 and 14 showed strong activity against PC3, the IC(50) being 10.6 and 2.2 microM, respectively, whereas compounds 3 and 8 showed strong activity against MDA-MB-231 (IC(50) is 9.3 and 3.6 microM, respectively). Aromatase inhibition assay showed that the tested compounds 9, 10, and 14 possess lower activity compared to formestane.
Tetrahedron | 2009
Velimir Popsavin; Goran Benedeković; Bojana Srećo; Jovana Francuz; Mirjana Popsavin; Vesna Kojić; Gordana Bogdanović; Vladimir Divjaković
Abstract Enantiodivergent total syntheses of both (+)- and (−)-enantiomers of goniofufurone, 7- epi -goniofufurone and crassalactone C have been accomplished starting from d -xylose. The key steps of the synthesis of 7- epi -(+)-goniofufurone were a stereo-selective addition of phenyl magnesium bromide to a protected dialdose, and a stereospecific furano–lactone ring formation by reaction of a related hemiacetal derivative with Meldrums acid. Synthesis of both (+)-goniofufurone and (+)-crassalactone C required a configurational inversion at C-5 in the common intermediate that was efficiently achieved under the standard Mitsunobu conditions, or alternatively through a sequential oxidation of the benzylic hydroxyl group followed by a stereo-selective reduction with borohydride. A similar approach was then applied to the synthesis of the unnatural (−)-enantiomers of goniofufurone, 7- epi -goniofufurone and crassalactone C, as well as two novel, conformationally constrained analogues of both (+)- and (−)-goniofufurone. Their in vitro antiproliferative activities against a number of human tumour cell lines were recorded and compared with those observed for the parent natural products.
Natural Product Research | 2014
Boris Pejin; Vesna Kojić; Gordana Bogdanović
The cytotoxicity of the diterpene alcohol, phytol, was evaluated by using the MTT assay in vitro against seven tumour cells and one normal cell of human origin. The compound tested induced concentration-dependent cytotoxic response in all cell lines, demonstrating to be most and least effective against the breast adenocarcinoma MCF-7 and the prostate adenocarcinoma PC-3 cells, respectively (IC50 8.79 ± 0.41 μM and 77.85 ± 1.93 μM). The IC50 values towards the other five tumours (HeLa, HT-29, A-549, Hs294T and MDA-MB-231) ranged from 15.51 to 69.67 μM. However, mild toxicity was detected against the foetal lung fibroblast MRC-5 cells at the concentrations used (IC50 124.84 ± 1.59 μM). According to the experimental data obtained, this cost-effective natural product widely present in the biosphere may inspire the development of new drug-like substances with improved cytotoxic activity on breast cancer.
European Journal of Medicinal Chemistry | 2012
Evgenija A. Djurendić; Jovana J. Ajduković; Marija N. Sakač; János Csanádi; Vesna Kojić; Gordana Bogdanović; Katarina M. Penov Gaši
New 17-picolyl and 17-picolinylidene androstane derivatives, 3-10, 15, 18, 19, 22 and 23, were synthesized starting from 17α-picolyl-androst-5-en-3β,17β-diol (1) and 17(Z)-picolinylidene-androst-5-en-3β-ol (2). Reaction of 1 with m-chloroperoxybenzoic acid gives 5α,6α-epoxy N-oxide derivative 3, or, with Jones reagent, 3,6-dione derivative 4; while 17α-picolyl-androst-5-en-3β,4α,17β-triol (5) or 3β,4β,17β-triol (6) derivatives are obtainable from 1 using SeO(2) in dioxane. Base-catalyzed tosyl group elimination from 7 or 9 affords AB conjugated derivatives 8 and 10. Oppenauer oxidation of 1 and 2 yields 4-en-3-one derivatives 11 and 12, which, with H(2)O(2) in 4 M NaOH, affords 4α,5α and 4β,5β-epoxides 13, 14, 16 and 17. New 4-methoxy-3-keto derivatives 15 and 18 were obtained from 13 and 14, or, with methanol in 4 M NaOH, from 16 and 17. Reduction of 11 with NaBH(4) gives 22, which was then acetylated to obtain 23. All new derivatives were screened for antitumor activity against human breast adenocarcinoma ER+, MCF-7; human breast adenocarcinoma ER-, MDA-MB-231; prostate cancer AR-, PC-3; human cervix carcinoma, HeLa; and colon cancer, HT-29 cells; as well as one human non-tumor cell line, MRC-5. Compounds 3, 5, 6, 8, 10, 18, 19 and 22 exhibited significant antitumor activity against MDA-MB-231 breast cancer cells; while 5, 6 and 10 also showed strong cytotoxicity against HT-29. Only compound 19 exhibited significant activity against MCF-7 breast cancer cells. No compounds displayed cytotoxicity against non-tumor MRC-5 cells.
Metal-based Drugs | 2002
Gordana Bogdanović; Vesna Kojić; Tatjana Srdic; Dimitar Jakimov; Miloš I. Djuran; Živadin D. Bugarčić; Mirjana Baltić; Vladimir Vit. Baltić
The platinum (II)complexes, cis-[PtCl2(CH3SCH2CH2SCH3)] (Pt1), cis-[PtCl2(dmso)2] (dmso is dimethylsulfoxide; Pt2) and cis-[PtCl2(NH3)2] (cisplatin), and taxol (T) have been tested at different equimolar concentrations. Cells were exposed to complexes for 2 h and left to recover in fresh medium for 24, 48 or 72 h. Growth inhibition was measured by tetrazolium WST1 assay Analyses of the cell cycle, and apoptosis were performed by flow cytometry, at the same exposure times. The IC50 value of each platinum(II) complex as well as combination index (CI; platinum(II) complex + taxol) for various cytotoxicity levels were determined by median effects analysis. MCF7 cells were found to be sensitive to both Pt1 and Pt2 complexe These cisplatin analogues influenced the cell growth more effectively as compared to cisplatin. Cytotoxic effect was concentration and time-dependent. Profound growth inhibitory effect was observed for Pt1 complex, across all its concentrations at all recovery periods. A plateau effect was achieved three days after treatment at Pt1 concentrations ≤ 1 μM. Pt2, however, decreased MCF7 cells survival only for the first 24 h ranging between 50-55%. Pt2 cytotoxicity sharply decreased thereafter, approaching 2 h - treatment cytotoxicity level. The median IC50 values for Pt1 and Pt2 were similar (0.337 and 0.3051 μM, respectively) but only for the first 24 h. The IC50 values for Pt1 strongly depend on the recovery period. On simultaneos exposure of cells to taxol and platinum(II) complexes no consistent effect was found. The Cls for combinations of taxol with Pt1 or Pt2 revealed cytotoxic effects that were in most Cases synergistic (Pt1) or less than addtiive (Pt2). Flow cytometry analysis has shown that each platinum(II) complex induced apoptosis in MCF7 cells. The level of apoptosis correlated with cytotoxicity level for the range concentrations. Both cisplatin analogues, at IC50 concentrations, increased the number of MCF7 cells in G0G1 phase of cell cycle. Pt2-treated cells remained arrested in G0G1 phase up to 72 h after treatment. Combination of Pt2 and taxol caused further arrest of cells in G0G1 phase (24 h) in parallel with strong decrement of G2M phase cells.