Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gordana Dukovic is active.

Publication


Featured researches published by Gordana Dukovic.


Journal of the American Chemical Society | 2012

Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes.

Molly B. Wilker; Marko Boehm; Gordana Dukovic; Paul W. King

We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H(+) to H(2) at a CaI turnover frequency of 380-900 s(-1) and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H(2). Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H(2) evolution by CaI. Production of H(2) by CdS:CaI was observed only under illumination and only in the presence of a sacrificial donor. We explored the effects of the CdS:CaI molar ratio, sacrificial donor concentration, and light intensity on photocatalytic H(2) production, which were interpreted on the basis of contributions to electron transfer, hole transfer, or rate of photon absorption, respectively. Each parameter was found to have pronounced effects on the CdS:CaI photocatalytic activity. Specifically, we found that under 405 nm light at an intensity equivalent to total AM 1.5 solar flux, H(2) production was limited by the rate of photon absorption (~1 ms(-1)) and not by the turnover of CaI. Complexes were capable of H(2) production for up to 4 h with a total turnover number of 10(6) before photocatalytic activity was lost. This loss correlated with inactivation of CaI, resulting from the photo-oxidation of the CdS capping ligand MPA.


Science | 2016

Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

Derek F. Harris; Molly B. Wilker; Andrew J. Rasmussen; Nimesh Khadka; Hayden Hamby; Stephen Keable; Gordana Dukovic; John W. Peters; Lance C. Seefeldt; Paul W. King

Enzymes make fertilizer with sunlight Nitrogenase enzymes catalyze the biological production of fixed nitrogen. Because this is not enough to sustain modern agriculture, industrial fertilizers containing ammonia are produced via the energy-intensive Haber-Bosch process. Brown et al. developed a way to use nitrogenase enzymes from nitrogen-fixing bacteria to make ammonia in vitro without other biological steps or high-energy inputs. Light-activated CdS nanorods provided electrons to the FeMo nitrogenase enzyme to reduce nitrogen and produce ammonia at rates up to 64% of biological nitrogen fixation. These nanoparticle-protein complexes show the potential for solar-driven ammonia production. Science, this issue p. 448 Enzymes attached to photoexcited semiconductor nanorods turn nitrogen into ammonia. The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5′-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3. The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.


Journal of the American Chemical Society | 2014

Electron Transfer Kinetics in CdS Nanorod–[FeFe]-Hydrogenase Complexes and Implications for Photochemical H2 Generation

Molly B. Wilker; Katherine E. Shinopoulos; David W. Mulder; Paul W. King; Gordana Dukovic

This Article describes the electron transfer (ET) kinetics in complexes of CdS nanorods (CdS NRs) and [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI). In the presence of an electron donor, these complexes produce H2 photochemically with quantum yields of up to 20%. Kinetics of ET from CdS NRs to CaI play a critical role in the overall photochemical reactivity, as the quantum efficiency of ET defines the upper limit on the quantum yield of H2 generation. We investigated the competitiveness of ET with the electron relaxation pathways in CdS NRs by directly measuring the rate and quantum efficiency of ET from photoexcited CdS NRs to CaI using transient absorption spectroscopy. This technique is uniquely suited to decouple CdS→CaI ET from the processes occurring in the enzyme during H2 production. We found that the ET rate constant (k(ET)) and the electron relaxation rate constant in CdS NRs (k(CdS)) were comparable, with values of 10(7) s(-1), resulting in a quantum efficiency of ET of 42% for complexes with the average CaI:CdS NR molar ratio of 1:1. Given the direct competition between the two processes that occur with similar rates, we propose that gains in efficiencies of H2 production could be achieved by increasing k(ET) and/or decreasing k(CdS) through structural modifications of the nanocrystals. When catalytically inactive forms of CaI were used in CdS-CaI complexes, ET behavior was akin to that observed with active CaI, demonstrating that electron injection occurs at a distal iron-sulfur cluster and is followed by transport through a series of accessory iron-sulfur clusters to the active site of CaI. Using insights from this time-resolved spectroscopic study, we discuss the intricate kinetic pathways involved in photochemical H2 generation in CdS-CaI complexes, and we examine how the relationship between the electron injection rate and the other kinetic processes relates to the overall H2 production efficiency.


Nanotechnology | 2004

Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions

Limin Huang; Xiaodong Cui; Gordana Dukovic; Stephen O’Brien

Very thin films of oriented and densely packed single-walled carbon nanotubes (SWNTs) can be self-assembled on substrates from surfactant sodium dodecyl sulfate (SDS-) coated SWNT suspensions at ambient conditions. The evaporation of water causes a concentration of the SDS-coated nanotubes above critical micelle concentrations for SDS, and it is believed that self-organization of the SDS molecules serves as a driving force for the oriented and dense assembly of the nanotubes. The high degree of alignment in the SWNT thin films was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and polarized Raman spectroscopy.


Israel Journal of Chemistry | 2012

Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals

Molly B. Wilker; Kyle J. Schnitzenbaumer; Gordana Dukovic

The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures.


Journal of the American Chemical Society | 2013

Charge Transfer Dynamics between Photoexcited CdS Nanorods and Mononuclear Ru Water-Oxidation Catalysts

Huan-Wei Tseng; Molly B. Wilker; Niels H. Damrauer; Gordana Dukovic

We describe the charge transfer interactions between photoexcited CdS nanorods and mononuclear water oxidation catalysts derived from the [Ru(bpy)(tpy)Cl](+) parent structure. Upon excitation, hole transfer from CdS oxidizes the catalyst (Ru(2+) → Ru(3+)) on a 100 ps to 1 ns timescale. This is followed by 10-100 ns electron transfer (ET) that reduces the Ru(3+) center. The relatively slow ET dynamics may provide opportunities for the accumulation of multiple holes at the catalyst, which is necessary for water oxidation.


Nano Letters | 2012

(Ga1–xZnx)(N1–xOx) Nanocrystals: Visible Absorbers with Tunable Composition and Absorption Spectra

Kyureon Lee; Bryan M. Tienes; Molly B. Wilker; Kyle J. Schnitzenbaumer; Gordana Dukovic

Bulk oxy(nitride) (Ga(1-x)Zn(x))(N(1-x)O(x)) is a promising photocatalyst for water splitting under visible illumination. To realize its solar harvesting potential, it is desirable to minimize its band gap through synthetic control of the value of x. Furthermore, improved photochemical quantum yields may be achievable with nanocrystalline forms of this material. We report the synthesis, structural, and optical characterization of nanocrystals of (Ga(1-x)Zn(x))(N(1-x)O(x)) with the values of x tunable from 0.30 to 0.87. Band gaps decreased from 2.7 to 2.2 eV over this composition range, which corresponded to a 260% increase in the fraction of solar photons that could be absorbed by the material. We achieved nanoscale morphology and compositional control by employing mixtures of ZnGa(2)O(4) and ZnO nanocrystals as synthetic precursors that could be converted to (Ga(1-x)Zn(x))(N(1-x)O(x)) under NH(3). The high quality of the resulting nanocrystals is encouraging for achieving photochemical water-splitting rates that are competitive with internal carrier recombination pathways.


Nature Chemistry | 2016

Observation of trapped-hole diffusion on the surfaces of CdS nanorods

James K. Utterback; Amanda N. Grennell; Molly B. Wilker; Orion M. Pearce; Joel D. Eaves; Gordana Dukovic

In CdS nanocrystals, photoexcited holes rapidly become trapped at the particle surface. The dynamics of these trapped holes have profound consequences for the photophysics and photochemistry of these materials. Using a combination of transient absorption spectroscopy and theoretical modelling, we demonstrate that trapped holes in CdS nanorods are mobile and execute a random walk at room temperature. In CdS nanorods of non-uniform width, we observe the recombination of spatially separated electrons and trapped holes, which exhibits a t-1/2 power-law decay at long times. A one-dimensional diffusion-annihilation model describes the time-dependence of the recombination over four orders of magnitude in time, from one nanosecond to ten microseconds, with a single adjustable parameter. We propose that diffusive trapped-hole motion is a general phenomenon in CdS nanocrystals, but one that is normally obscured in structures in which the wavefunctions of the electron and trapped hole spatially overlap. This phenomenon has important implications for the oxidation photochemistry of CdS nanocrystals.


Journal of the American Chemical Society | 2015

Solvents Effects on Charge Transfer from Quantum Dots

Jennifer L. Ellis; Daniel D. Hickstein; Kyle J. Schnitzenbaumer; Molly B. Wilker; Brett B. Palm; Jose L. Jimenez; Gordana Dukovic; Henry C. Kapteyn; Margaret M. Murnane; Wei Xiong

To predict and understand the performance of nanodevices in different environments, the influence of the solvent must be explicitly understood. In this Communication, this important but largely unexplored question is addressed through a comparison of quantum dot charge transfer processes occurring in both liquid phase and in vacuum. By comparing solution phase transient absorption spectroscopy and gas-phase photoelectron spectroscopy, we show that hexane, a common nonpolar solvent for quantum dots, has negligible influence on charge transfer dynamics. Our experimental results, supported by insights from theory, indicate that the reorganization energy of nonpolar solvents plays a minimal role in the energy landscape of charge transfer in quantum dot devices. Thus, this study demonstrates that measurements conducted in nonpolar solvents can indeed provide insight into nanodevice performance in a wide variety of environments.


Journal of Physical Chemistry Letters | 2016

Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams

Jennifer L. Ellis; Daniel D. Hickstein; Wei Xiong; Franklin Dollar; Brett B. Palm; K. Ellen Keister; Kevin M. Dorney; Chengyuan Ding; Tingting Fan; Molly B. Wilker; Kyle J. Schnitzenbaumer; Gordana Dukovic; Jose L. Jimenez; Henry C. Kapteyn; Margaret M. Murnane

We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.

Collaboration


Dive into the Gordana Dukovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Molly B. Wilker

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Feng Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Kyle J. Schnitzenbaumer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Paul W. King

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brett B. Palm

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Daniel D. Hickstein

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry C. Kapteyn

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge