Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gordana Rašić is active.

Publication


Featured researches published by Gordana Rašić.


Evolutionary Applications | 2015

Wolbachia strains for disease control: ecological and evolutionary considerations.

Ary A. Hoffmann; Perran A. Ross; Gordana Rašić

Wolbachia are endosymbionts found in many insects with the potential to suppress vectorborne diseases, particularly through interfering with pathogen transmission. Wolbachia strains are highly variable in their effects on hosts, raising the issue of which attributes should be selected to ensure that the best strains are developed for disease control. This depends on their ability to suppress viral transmission, invade host populations, persist without loss of viral suppression and not interfere with other control strategies. The potential to achieve these objectives is likely to involve evolutionary constraints; viral suppression may be limited by the ability of infections to spread due to deleterious host fitness effects. However, there are exceptions to these patterns in both natural infections and in novel associations generated following interspecific transfer, suggesting that pathogen blockage, deleterious fitness effects and changes to reproductive biology might be at least partly decoupled to achieve ideal infection attributes. The stability of introduced Wolbachia and its effects on viral transmission remain unclear, but rapid evolutionary changes seem unlikely. Although deliberate transfers of Wolbachia across species remain particularly challenging, the availability of strains with desirable attributes should be expanded, taking advantage of the diversity available across thousands of strains in natural populations.


PLOS Biology | 2017

Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti

Thomas L Schmidt; Nicholas H. Barton; Gordana Rašić; Andrew P. Turley; Brian L. Montgomery; Iñaki Iturbe-Ormaetxe; Peter E. Cook; Peter A. Ryan; Scott A. Ritchie; Ary A. Hoffmann; Scott L. O’Neill; Michael Turelli

Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.


Ecological Applications | 2014

Using Wolbachia-based release for suppression of Aedes mosquitoes: insights from genetic data and population simulations.

Gordana Rašić; Nancy M. Endersby; Craig R. Williams; Ary A. Hoffmann

A novel strategy for suppressing disease transmission by Aedes aegypti, the main vector of dengue, uses releases of mosquitoes infected with the bacterium Wolbachia pipientis. Wolbachia are currently released to interfere with viral transmission, but there is also potential to use strains in mosquito suppression and elimination programs via the deleterious effects of the bacterium on the host. Mosquito suppression depends on target areas being relatively isolated to prevent reinvasion and on local climatic conditions. Here we explored the opportunity for suppression of A. aegypti in central Queensland, Australia, by using microsatellite data and simulations based on CIMSiM models of local weather conditions and breeding container data. Our results indicate that Wolbachia-induced extinctions in central Queensland are possible, although they may eventually be compromised by ongoing mosquito migration between towns until these sources are also suppressed. The results highlight a novel use of deleterious Wolbachia infections to achieve ecological as well as disease-related endpoints.


Evolutionary Applications | 2015

Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control

Gordana Rašić; Renata Schama; Rosanna Powell; Rafael Maciel de Freitas; Nancy M. Endersby-Harshman; Igor Filipović; Gabriel Sylvestre; Renato C. Máspero; Ary A. Hoffmann

Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction‐site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio.


Molecular Ecology | 2012

From broadscale patterns to fine‐scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales

Gordana Rašić; Nusha Keyghobadi

The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge’s habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual‐based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full‐sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species.


Molecular Ecology Resources | 2009

Characterization of microsatellite loci for the western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae)

Sheri A. Maxwell; Gordana Rašić; Nusha Keyghobadi

The western cherry fruit fly (Rhagoletis indifferens) is a major pest of cherry crops in western North America, yet relatively little is known about its population structure or movement patterns due to the difficulty of studying these parameters directly in the field. We isolated and characterized a set of 16 polymorphic microsatellite loci specific to R. indifferens that display sufficient polymorphism to assess genetic structure and movement patterns. All 16 loci amplified in one or more other Rhagoletis species, indicating that they are useful tools for genetic analysis in other members of the genus, many of which are also agricultural pests.


Parasites & Vectors | 2015

Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia.

Gordana Rašić; Nancy M. Endersby-Harshman; Warsito Tantowijoyo; Anjali Goundar; Vanessa L. White; Qiong Yang; Igor Filipović; Petrina H. Johnson; Ary A. Hoffmann; Eggi Arguni

BackgroundDengue fever, the most prevalent global arboviral disease, represents an important public health problem in Indonesia. Control of dengue relies on the control of its main vector, the mosquito Aedes aegypti, yet nothing is known about the population history and genetic structure of this insect in Indonesia. Our aim was to assess the spatio-temporal population genetic structure of Ae. aegypti in Yogyakarta, a densely populated region on Java with common dengue outbreaks.MethodsWe used multiple marker systems (microsatellites, nuclear and mitochondrial genome-wide single nucleotide polymorphisms generated via Restriction-site Associated DNA sequencing) to analyze 979 Ae. aegypti individuals collected from the Yogyakarta city and the surrounding hamlets during the wet season in 2011 and the following dry season in 2012. We employed individual- and group-based approaches for inferring genetic structure.ResultsWe found that Ae. aegypti in Yogyakarta has spatially structured and seasonally stable populations. The spatial structuring was significant for the nuclear and mitochondrial markers, while the temporal structuring was non-significant. Nuclear markers identified three main genetic clusters, showing that hamlets have greater genetic isolation from each other and from the inner city sites. However, one hamlet experienced unrestricted mosquito interbreeding with the inner city, forming a single genetic cluster. Genetic distance was poorly correlated with the spatial distance among mosquito samples, suggesting stronger influence of human-assisted gene flow than active mosquito movement on spatial genetic structure. A star-shaped mitochondrial haplotype network and a significant R2 test statistic (R2 = 0.0187, P = 0.001) support the hypothesis that Ae. aegypti in Yogyakarta originated from a small or homogeneous source and has undergone a relatively recent demographic expansion.ConclusionWe report the first insights into the spatio-temporal genetic structure and the underlying processes in the dengue fever mosquito from Yogyakarta, Indonesia. Our results provide valuable information on the effectiveness of local control measures as well as guidelines for the implementation of novel biocontrol strategies such as release of Wolbachia-infected mosquitoes.


Infection, Genetics and Evolution | 2013

Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse)

Nancy M. Endersby; Vanessa L. White; Janice Chan; Tim Hurst; Gordana Rašić; Adam D. Miller; Ary A. Hoffmann

Aedes notoscriptus (Skuse), a mosquito from the southwest Pacific region including Australia, has been implicated as a vector of arboviruses, but its status as a species is unclear. To investigate the taxonomic situation, we assessed genetic variation and phylogenetic relationships among Ae. notoscriptus from the east coast of Australia, Western Australia and New Zealand. Phylogenetic analyses of DNA sequence data from mitochondrial markers indicate that Ae. notoscriptus is a complex of divergent genetic lineages, some of which appear geographically restricted, while others are widespread in eastern Australia. Samples from New Zealand and Western Australia were related to populations from one southern Australian lineage. Nuclear markers show no evidence of genetic isolation by geographic distance in the overall sample of mosquitoes, but strong isolation by distance is obvious within two of the lineages, supporting their status as isolated gene pools. The morphological character of wing centroid size variation is also associated with genetic lineage. These findings point to the possibility that Ae. notoscriptus is a complex of species, highlighting the need to understand physiological and ecological differences that may influence future control strategies.


Acta Biologica Hungarica | 2008

THE EFFECT OF LEAD ON FITNESS COMPONENTS AND DEVELOPMENTAL STABILITY IN DROSOPHILA SUBOBSCURA

Marina Stamenkovic-Radak; Predrag Kalajdzic; Tatjana Savić; Marija Savic; Zorana Kurbalija; Gordana Rašić; Marko Andjelkovic

We analyzed the developmental time, egg-to-adult viability, and developmental stability (fluctuating wing size asymmetry) in Drosophila subobscura, maintained for six generations on different concentrations of lead. Development time is significantly affected by generation and lead concentration, but interaction of these factors is not a significant source of variability for this fitness component. Generation and the interaction generation x concentration of lead significantly affect egg-to-adult viability. Levenes test of heterogeneity of variance showed that variability of FA is not significant in any of the samples. Within both lead concentrations females showed significantly higher FA indices for the wing width than males. Within sexes, a significantly higher FA was found only in females for wing width FA between the control and the lower concentration of lead. The results show that if strong relationship between FA and the studied fitness components exists, it results in a stronger selection of unstable genotypes under lead as a stress factor and, consequently, FA needs to be used with caution as a biomarker in natural populations under environmental stress.


Molecular Ecology | 2016

Contrasting patterns of population connectivity between regions in a commercially important mollusc Haliotis rubra: integrating population genetics, genomics and marine LiDAR data

Adam D. Miller; A. van Rooyen; Gordana Rašić; Daniel Ierodiaconou; Harry Gorfine; Robert W. Day; C. Wong; Ary A. Hoffmann; Andrew R. Weeks

Estimating contemporary genetic structure and population connectivity in marine species is challenging, often compromised by genetic markers that lack adequate sensitivity, and unstructured sampling regimes. We show how these limitations can be overcome via the integration of modern genotyping methods and sampling designs guided by LiDAR and SONAR data sets. Here we explore patterns of gene flow and local genetic structure in a commercially harvested abalone species (Haliotis rubra) from southeastern Australia, where the viability of fishing stocks is believed to be dictated by recruitment from local sources. Using a panel of microsatellite and genomewide SNP markers, we compare allele frequencies across a replicated hierarchical sampling area guided by bathymetric LiDAR imagery. Results indicate high levels of gene flow and no significant genetic structure within or between benthic reef habitats across 1400 km of coastline. These findings differ to those reported for other regions of the fishery indicating that larval supply is likely to be spatially variable, with implications for management and long‐term recovery from stock depletion. The study highlights the utility of suitably designed genetic markers and spatially informed sampling strategies for gaining insights into recruitment patterns in benthic marine species, assisting in conservation planning and sustainable management of fisheries.

Collaboration


Dive into the Gordana Rašić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nusha Keyghobadi

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge