Gordon Chambers
Dublin Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gordon Chambers.
Toxicology Letters | 2008
Alan Casey; Eva Herzog; Fiona M. Lyng; Hugh J. Byrne; Gordon Chambers; Maria Davoren
The ability of two types of single walled carbon nanotubes (SWCNT), namely Arc Discharge (AD) and HiPco single walled carbon nanotubes, to induce an indirect cytotoxicity in A549 lung cells by means of medium depletion was investigated. The nanotubes were dispersed in a commercial cell culture medium and subsequently removed by centrifugation and filtration. Spectroscopic analysis confirmed the removal of the nanotubes and showed differing degrees of alteration of the composition of the medium upon the removal of the nanotubes. The ability to induce an indirect cytotoxic effect by altering the medium was evaluated using two endpoints, namely the Alamar Blue (AB) and the Clonogenic assay. Exposure of the A549 cells to the depleted medium which had previously contained carbonaceous nanoparticles, revealed significant cytotoxicity for both endpoints employed. The results presented demonstrate that single walled carbon nanotubes can induce an indirect cytotoxicity by alteration of cell culture medium (in which they have previously been dispersed) which potentially results in a false positive toxic effect being observed in cytotoxicity studies.
Nanotoxicology | 2011
Hans Bouwmeester; Iseult Lynch; Hans J.P. Marvin; Kenneth A. Dawson; Markus Berges; Diane Braguer; Hugh J. Byrne; Alan Casey; Gordon Chambers; Martin J. D. Clift; Giuliano Elia; Teresa F. Fernandes; Lise Fjellsbø; Peter Hatto; Lucienne Juillerat; Christoph Klein; Wolfgang G. Kreyling; Carmen Nickel; Michael Riediker; Vicki Stone
Abstract This paper presents the outcomes from a workshop of the European Network on the Health and Environmental Impact of Nanomaterials (NanoImpactNet). During the workshop, 45 experts in the field of safety assessment of engineered nanomaterials addressed the need to systematically study sets of engineered nanomaterials with specific metrics to generate a data set which would allow the establishment of dose-response relations. The group concluded that international cooperation and worldwide standardization of terminology, reference materials and protocols are needed to make progress in establishing lists of essential metrics. High quality data necessitates the development of harmonized study approaches and adequate reporting of data. Priority metrics can only be based on well-characterized dose-response relations derived from the systematic study of the bio-kinetics and bio-interactions of nanomaterials at both organism and (sub)-cellular levels. In addition, increased effort is needed to develop and validate analytical methods to determine these metrics in a complex matrix.
Toxicology in Vitro | 2012
Sanchali Gupta Mukherjee; Niall Ó Claonadh; Alan Casey; Gordon Chambers
In this study the cytotoxic effect of commercially available silver (Ag) nanoparticle was evaluated using human dermal and cervical cancer cell lines. Prior to the cellular studies a full particle size characterisation was carried out using Dynamic Light Scattering (DLS), Transmission Electron Microscopy and Scanning Electron Microscopy in distilled water and cell culture media. The Zeta Potential (ZP) associated with the Ag nanoparticle was also determined in order to assess its stability in the solutions and its possible interaction with the media. The DLS and ZP study have suggested interaction of Ag nanoparticles with the media, which can lead to secondary toxicity. The toxic effects of Ag nanoparticles were then evaluated using different cytotoxic endpoints namely the lysosomal activity, mitochondrial metabolism, basic cellular metabolism, cellular protein content and cellular proliferative capacity. The cytotoxic effect of Ag nanoparticle was dependant on dose, exposure time and on the cell line tested. Further investigation was carried out on HeLa and HaCaT cell lines to elucidate the mechanism of its cytotoxicity. The Ag nanoparticle was noted to induce elevated levels of oxidative stress, glutathione depletion and damage to the cell membrane as found from the adenylate kinase assay and that leads to the apoptosis. Overall, significant differences were observed between the sensitivity of the two cell lines which can be understood in terms of their natural antioxidant levels.
Synthetic Metals | 2001
Alan B. Dalton; Werner J. Blau; Gordon Chambers; Jonathan N. Coleman; K. Henderson; S. Lefrant; B. McCarthy; Christophe Stephan; H.J. Byrne
Solutions of a semi-conjugated polymer are capable of suspending single wall carbon nanotubes indefinitely whilst the accompanying amorphous graphite settles out. Moreover, Raman spectroscopy indicates that the polymer preferentially interacts with nanotubes of specific diameters or range of diameters.
Journal of Physical Chemistry B | 2004
S. M. Keogh; Theresa G. Hedderman; Elizabeth Gregan; Garrett F. Farrell; Gordon Chambers; Hugh J. Byrne
Interactions between arc discharge single-walled carbon nanotubes within polymer composites have been well documented. Here hybrid systems of the conjugated organic polymer poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) (PmPV) and HiPco SWNTs are explored using UV/vis/NIR and Raman spectroscopy at 514.5 and 632.8 nm to determine specific interactions. An examination of the radial breathing modes at 514.5 nm shows similar tube diameters of 1.28 and 1.35 nm selected for both the arc discharge and HiPco composites. The corresponding G lines of both composites show no specific type of tubes being selected. At 514.5 nm, the G line of the HiPco composite (1% mass fraction) shows contributions from semiconducing and metallic tubes, and the arc discharge composite (1% mass fraction) is dominated by semiconducting nanotubes. At 632.8 nm, the G line of the HiPco composite (1% mass fraction) is dominated by semiconducting tubes, and the arc discharge composite (1% mass fraction) shows strong contributions from metallic tubes. This finding is a strong indication that the selection process is dependent on tube diameter rather than backbone structure. The solubility limits of both composites are determined by investigating the G lines of both composites and have been found to be greater than 1% mass fraction by weight for the arc discharge composite and greater than 0.1% mass fraction by weight for the HiPco composite.
Chemical Physics Letters | 1999
Gordon Chambers; H.J. Byrne
The Raman scattering signal of C60 in solution was monitored as a function of the excitation intensity at 514.5 nm. Whereas at low intensities the A2g pentagonal pinch mode was positioned at 1469 cm−1, at intensities where an inverse saturable absorption is observable, it was positioned at 1466 cm−1. This mode positioning is ascribed to the molecular triplet state. When measured at the cuvette interface, the ground-state Raman mode, at 1469 cm−1 in solution was seen to degrade quickly under illumination to a lower Raman frequency of 1458 cm−1 where an insoluble deposit formed, which has been identified as a photochemical product of C60 analogous to the solid-state C60 polymer formed by a 2+2 cyclo-addition across π bonds of neighbouring molecules. The process is seen to be reversible under high-intensity illumination, via an intermediate state with mode positioning at 1463 cm−1. This state is associated with a high-intensity excited state previously reported in the solid state of C60.
Journal of Applied Toxicology | 2016
Anna Murphy; Alan Casey; G. Byrne; Gordon Chambers; O. Howe
A complete cytotoxic profile of exposure to silver (AgNP) nanoparticles investigating their biological effects on the innate immune response of circulating white blood cells is required to form a complete understanding of the risk posed. This was explored by measuring AgNP‐stimulated gene expression of the pro‐inflammatory cytokines interleukin‐1 (IL‐1), interleukin‐6 (IL‐6) and tumour necrosis factor‐alpha (TNF‐α) in THP‐1 monocytes. A further study, on human monocytes extracted from a cohort of blood samples, was carried out to compare with the AgNP immune response in THP‐1 cells along with the detection of pro‐IL‐1β which is a key mediator of the inflammasome complex.
Noise & Health | 2012
Aoife C. Kelly; Sara M. Boyd; Gary T.M. Henehan; Gordon Chambers
Due to the transposition of the EU Directive 2003/10/EC into Irish Law, the entertainment sector was obligated to comply with the requirements of the Safety, Health and Welfare at Work (General Application) Regulations 2007, Chapter 1 Part 5: Control of Noise at Work since February 2008. Compliance with the Noise Regulations was examined in 9 nightclubs in Ireland. The typical daily noise exposure of 19 bar employees was measured using 2 logging dosimeters and a Type 1 fixed position sound level meter. Physical site inspections identified nightclub noise control measures. Interviews and questionnaires were used to assess the managers and employees awareness of the noise legislation. The average bar employee daily noise exposure (L(EX, 8h)) was 92 dBA, almost 4 times more than the accepted legal limit. None of the venues examined were fully compliant with the requirements of the 2007 Noise Regulations, and awareness of this legislation was limited.
Journal of Applied Toxicology | 2015
Anna Murphy; Kate Sheehy; Alan Casey; Gordon Chambers
Establishing realistic exposure scenarios is critical for cytotoxic investigation of silver nanoparticles (AgNP) in the gastrointestinal tract. This study investigated the potential interaction with and effect of biofluid components, namely cholic acid, deoxycholic acid and ursodeoxycholic acid, on AgNP toxicity. Two cell lines corresponding to organs related to the biofluid components were employed. These were HepG‐2 a hepatocellular carcinoma derived from liver tissue and Hep2 an epithelial cell line. Physiochemical and cytotoxic screening was performed and the ability of biofluid components to modify AgNP cytotoxicity was explored. No alteration to the physiochemical characteristics of AgNP by biofluid components was demonstrated. However, biofluid component addition resulted in alteration of AgNP toxicity. Greater reactive oxygen species induction was noted in the presence of cholic acid and deoxycholic acid. Ursodeoxycholic acid demonstrated no modification of toxicity in HepG‐2 cells; however, significant modification was noted in Hep2 cells. It is concluded that biofluid components can modify AgNP toxicity but this is dependent on the biofluid component itself and the location where it acts. Copyright
Journal of Applied Toxicology | 2015
Anna Murphy; Kate Sheehy; Alan Casey; Gordon Chambers
Nanotechnology is a rapidly growing field with silver nanoparticles (AgNP) in particular utilized in a wide variety of consumer products. This has presented a number of concerns relating to exposure and the associated toxicity to humans and the environment. As inhalation is the most common exposure route, this study investigates the potential toxicity of AgNP to A549 alveolar epithelial carcinoma cells and the influence of a major component of lung surfactant dipalmitoylphosphatidylcholine (DPPC) on toxicity. It was illustrated that exposure to AgNP generated low levels of oxidative stress and a reduction in cell viability. While DPPC produced no significant effect on viability studies its presence resulted in increased reactive oxygen species formation. DPPC also significantly modified the inflammatory response generated by AgNP exposure. These findings suggest a possible interaction between AgNP and DPPC causing particles to become more reactive, thus increasing oxidative insult and inflammatory response within A549 cells. Copyright