Gordon E. Mawdsley
Sunnybrook Health Sciences Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gordon E. Mawdsley.
Medical Physics | 1987
Robert M. Nishikawa; Gordon E. Mawdsley; Aaron Fenster; Martin J. Yaffe
The effectiveness of film-screen mammography is limited by tradeoffs between latitude and contrast, film granularity, and the need to increase dose when antiscatter methods are used. We are currently developing a scanned-projection digital mammography (SPDM) system to overcome these limitations. The system consists of a pair of scanning slits, a high-resolution x-ray image intensifier tube, a linear photodiode array, and a digital display. The detective quantum efficiency of the SPDM system at spatial frequencies up to 3 cycles/mm is similar to that of mammographic film-screen combinations, but is lower at high frequencies. For low-contrast objects as small as 0.1 mm in diameter, the signal-to-noise ratio is currently equal to that of optimally exposed mammographic film-screen images for equal dose to the breast and superior for regions which would be underexposed or overexposed on film. This is achieved by the use of a low-noise detector system, geometric magnification, and scatter elimination. Images of a contrast-detail phantom and excised breast tissue illustrate the superior contrast sensitivity of SPDM.
Medical Physics | 2006
Aili K. Bloomquist; Martin J. Yaffe; Etta D. Pisano; R. Edward Hendrick; Gordon E. Mawdsley; Stewart Bright; Sam shen; Mahadevappa Mahesh; Edward L. Nickoloff; Richard C. Fleischman; Mark B. Williams; Andrew D. A. Maidment; Daniel J. Beideck; Joseph Och; J. A. Seibert
The Digital Mammography Imaging Screening Trial, conducted by the American College of Radiology Imaging Network, is a clinical trial designed to compare the accuracy of full-field digital mammography (FFDM) versus screen-film mammography in a screening population. Five FFDM systems from four manufacturers (Fischer, Fuji, General Electric, and Lorad) were employed in the study at 35 clinical sites. A core physics team devised and implemented tests to evaluate these systems. A detailed description of physics and quality control tests is presented, including estimates of: mean glandular dose, modulation transfer function (MTF), 2D noise power spectra, and signal-to-noise ratio (SNR). The mean glandular doses for the standard breast ranged from 0.79 to 2.98 mGy, with 1.62 mGy being the average across all units and machine types. For the five systems evaluated, the MTF dropped to 50% at markedly different percentages (22% to 87%) of the Nyquist limit, indicating that factors other than detector element (del) size have an important effect on spatial resolution. Noise power spectra and SNR were measured; however, we found that it was difficult to standardize and compare these between units. For each machine type, the performance as measured by the tests was very consistent, and no predictive benefit was seen for many of the tests during the 2-year period of the trial. It was found that, after verification of proper operation during acceptance testing, if systems failed they generally did so suddenly rather than through gradual deterioration of performance. Because of the relatively short duration of this study further, investigation of the long-term failure characteristics of these systems is advisable.
Health Physics | 1991
Martin J. Yaffe; Gordon E. Mawdsley; Martin J. Lilley; Ray Servant; George Reh
We have developed and tested a radiation protection material that provides similar attenuation for diagnostic x-ray spectra to that of conventional Pb apron materials with approximately 30% reduced weight. By combining a number of elements with different K absorption energies, such as Ba, W, and Pb, energy attenuation for given spectra can be optimized with respect to total cross-sectional mass loading. Alternatively, garments with much higher protective factors at equivalent weight to conventional garments could be produced. The reduction in the amount of Pb used also reduces problems associated with the toxicity of the material during manufacture and disposal. Back strain can be reduced for personnel performing special radiological procedures that require wearing protective garments for long periods of time.
Medical Physics | 2008
Mark B. Williams; Priya Raghunathan; Mitali J. More; J. Anthony Seibert; Alexander L. C. Kwan; Joseph Y. Lo; Ehsan Samei; Nicole T. Ranger; Laurie L. Fajardo; Allen McGruder; Sandra M. McGruder; Andrew D. A. Maidment; Martin J. Yaffe; Aili K. Bloomquist; Gordon E. Mawdsley
Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fujis 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and on the receptor type. In most cases, the AECs of the FFDM systems successfully identified exposure parameters resulting in FOM values near the maximum ones, however, there were several examples where AEC performance could be improved.
Medical Physics | 2006
Martin J. Yaffe; Aili K. Bloomquist; Gordon E. Mawdsley; Etta D. Pisano; R. Edward Hendrick; Laurie L. Fajardo; John M. Boone; Kalpana M. Kanal; Mahadevappa Mahesh; Richard C. Fleischman; Joseph Och; Mark B. Williams; Daniel J. Beideck; Andrew D. A. Maidment
The Digital Mammography Imaging Screening Trial (DMIST), conducted under the auspices of the American College of Radiology Imaging Network (ACRIN), is a clinical trial designed to compare the accuracy of digital versus screen-film mammography in a screening population [E. Pisano et al., ACRIN 6652-Digital vs. Screen-Film Mammography, ACRIN (2001)]. Part I of this work described the Quality Control program developed to ensure consistency and optimal operation of the digital equipment. For many of the tests, there were no failures during the 24 months imaging was performed in DMIST. When systems failed, they generally did so suddenly rather than through gradual deterioration of performance. In this part, the utility and effectiveness of those tests are considered. This suggests that after verification of proper operation, routine extensive testing would be of minimal value. A recommended set of tests is presented including additional and improved tests, which we believe meet the intent and spirit of the Mammography Quality Standards Act regulations to ensure that full-field digital mammography systems are functioning correctly, and consistently producing mammograms of excellent image quality.
Medical Physics | 2009
Albert H. Tyson; Gordon E. Mawdsley; Martin J. Yaffe
The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.
Radiology | 2015
Olivier Alonzo-Proulx; Gordon E. Mawdsley; James T. Patrie; Martin J. Yaffe; Jennifer A. Harvey
PURPOSE To estimate the reliability of a reference standard two-dimensional area-based method and three automated volumetric breast density measurements by using repeated measures. MATERIALS AND METHODS Thirty women undergoing screening mammography consented to undergo a repeated left craniocaudal examination performed by a second technologist in this prospective institutional review board-approved HIPAA-compliant study. Breast density was measured by using an area-based method (Cumulus ABD) and three automated volumetric methods (CumulusV [University of Toronto], Volpara [version 1.4.5; Volpara Solutions, Wellington, New Zealand), and Quantra [version 2.0; Hologic, Danbury, Conn]). Discrepancy between the first and second breast density measurements (Δ1-2) was obtained for each algorithm by subtracting the second measurement from the first. The Δ1-2 values of each algorithm were then analyzed with a random-effects model to derive Bland-Altman-type limits of measurement agreement. RESULTS Variability was higher for Cumulus ABD and CumulusV than for Volpara or Quantra. The within-breast density measurement standard deviations were 3.32% (95% confidence interval [CI]: 2.65, 4.44), 3.59% (95% CI: 2.86, 4.48), 0.99% (95% CI: 0.79, 1.33), and 1.64% (95% CI: 1.31, 1.39) for Cumulus ABD, CumulusV, Volpara, and Quantra, respectively. Although the mean discrepancy between repeat breast density measurements was not significantly different from zero for any of the algorithms, larger absolute breast density discrepancy (Δ1-2) values were associated with larger breast density values for Cumulus ABD and CumulusV but not for Volpara and Quantra. CONCLUSION Variability in a repeated measurement of breast density is lowest for Volpara and Quantra; these algorithms may be more suited to incorporation into a risk model.
Radiology | 2008
R. Edward Hendrick; Elodia B. Cole; Etta D. Pisano; Suddhasatta Acharyya; Helga S. Marques; Michael A. Cohen; Roberta A. Jong; Gordon E. Mawdsley; Kalpana M. Kanal; Carl J. D'Orsi; Murray Rebner; Constantine Gatsonis
PURPOSE To retrospectively compare the accuracy for cancer diagnosis of digital mammography with soft-copy interpretation with that of screen-film mammography for each digital equipment manufacturer, by using results of biopsy and follow-up as the reference standard. MATERIALS AND METHODS The primary HIPAA-compliant Digital Mammographic Imaging Screening Trial (DMIST) was approved by the institutional review board of each study site, and informed consent was obtained. The approvals and consent included use of data for future HIPAA-compliant retrospective research. The American College of Radiology Imaging Network DMIST collected screening mammography studies performed by using both digital and screen-film mammography in 49 528 women (mean age, 54.6 years; range, 19-92 years). Digital mammography systems from four manufacturers (Fischer, Fuji, GE, and Hologic) were used. For each digital manufacturer, a cancer-enriched reader set of women screened with both digital and screen-film mammography in DMIST was constructed. Each reader set contained all cancer-containing studies known for each digital manufacturer at the time of reader set selection, together with a subset of negative and benign studies. For each reader set, six or 12 experienced radiologists attended two randomly ordered reading sessions 6 weeks apart. Each radiologist identified suspicious findings and rated suspicion of breast cancer in identified lesions by using a seven-point scale. Results were analyzed according to digital manufacturer by using areas under the receiver operating characteristic curve (AUCs), sensitivity, and specificity for soft-copy digital and screen-film mammography. Results for Hologic digital are not presented owing to the fact that few cancer cases were available. The implemented design provided 80% power to detect average AUC differences of 0.09, 0.08, and 0.06 for Fischer, Fuji, and GE, respectively. RESULTS No significant difference in AUC, sensitivity, or specificity was found between Fischer, Fuji, and GE soft-copy digital and screen-film mammography. Large reader variations occurred with each modality. CONCLUSION No statistically significant differences were found between soft-copy digital and screen-film mammography for Fischer, Fuji, and GE digital mammography equipment.
Medical Imaging 1993: Physics of Medical Imaging | 1993
Andrew D. A. Maidment; Martin J. Yaffe; Donald B. Plewes; Gordon E. Mawdsley; Ian C. Soutar; Brian G. Starkoski
A prototype of a clinical scanned-slot digital mammography imaging system has been developed, which demonstrates better contrast sensitivity and latitude than current state-of-the- art film-screen mammography systems. The detector consists of a Gd2O2S:Tb phosphor screen coupled via a 2-to-1 demagnifying fiber-optic taper to two time-delay integration (TDI) charge-coupled device (CCD) image arrays. Images are obtained by scanning the 4.0 mm wide by 21 cm long detector across the image field. An 18 cm by 21 cm image contains 2900 by 4032 pixels, of dimension 62 micrometers X 52 micrometers at the detector. Currently, images are produced in 7.8 seconds using a 40 kV tungsten-target spectrum with a total heat load of 50 kJ, giving a mean glandular dose of 0.85 mGy (85 mrad) to a 5 cm thick 50% glandular, 50% adipose breast. The detector has a limiting resolution of 9.5 lp/mm. A clinical version of this prototype, which incorporates several improvements, is being constructed.
Medical Physics | 2006
Martin J. Yaffe; Aili K. Bloomquist; Gordon E. Mawdsley; Etta D. Pisano; R. Edward Hendrick; Laurie L. Fajardo; John M. Boone; Kalpana M. Kanal; Mahadevappa Mahesh; Richard C. Fleischman; Joseph Och; Mark B. Williams; Daniel J. Beideck; Andrew D. A. Maidment
The Digital Mammography Imaging Screening Trial (DMIST), conducted under the auspices of the American College of Radiology Imaging Network (ACRIN), is a clinical trial designed to compare the accuracy of digital versus screen-film mammography in a screening population [E. Pisano et al., ACRIN 6652-Digital vs. Screen-Film Mammography, ACRIN (2001)]. Part I of this work described the Quality Control program developed to ensure consistency and optimal operation of the digital equipment. For many of the tests, there were no failures during the 24 months imaging was performed in DMIST. When systems failed, they generally did so suddenly rather than through gradual deterioration of performance. In this part, the utility and effectiveness of those tests are considered. This suggests that after verification of proper operation, routine extensive testing would be of minimal value. A recommended set of tests is presented including additional and improved tests, which we believe meet the intent and spirit of the Mammography Quality Standards Act regulations to ensure that full-field digital mammography systems are functioning correctly, and consistently producing mammograms of excellent image quality.