Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gordon M. Kirby is active.

Publication


Featured researches published by Gordon M. Kirby.


Molecular Pharmacology | 2007

Dexamethasone-Mediated Up-Regulation of Human CYP2A6 Involves the Glucocorticoid Receptor and Increased Binding of Hepatic Nuclear Factor 4α to the Proximal Promoter

Tania Onica; Kathleen Nichols; Meghan Larin; Lorraine Ng; Ann Maslen; Zdenek Dvorak; Jean-Marc Pascussi; M.J. Vilarem; Patrick Maurel; Gordon M. Kirby

Human cytochrome P450 2A6 (CYP2A6) metabolizes various clinically relevant compounds, including nicotine- and tobacco-specific procarcinogens; however, transcriptional regulation of this gene is poorly understood. We investigated the role of the glucocorticoid receptor (GR) in transcriptional regulation of CYP2A6. Dexamethasone (DEX) increased CYP2A6 mRNA and protein levels in human hepatocytes in primary culture. This effect was attenuated by the GR receptor antagonist mifepristone (RU486; 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one), suggesting that induction of CYP2A6 by DEX was mediated by the GR. In gene reporter assays, DEX caused dose-dependent increases in luciferase activity that was also prevented by RU486 and progressive truncations of the CYP2A6 promoter delineated DEX-responsiveness to a -95 to +12 region containing an hepatic nuclear factor 4 (HNF4) α response element (HNF4-RE). Mutation of the HNF4-RE abrogated HNF4α- and DEX-mediated transactivation of CYP2A6. In addition, overexpression of HNF4α increased CYP2A6 transcriptional activity by 3-fold. DEX increased HNF4α mRNA levels by 4-fold; however, the amount of HNF4α nuclear protein was unaltered. Electrophoretic mobility shift, chromatin immunoprecipitation (ChIP), and streptavidin DNA binding assays revealed that DEX increased binding of HNF4α to the HNF4-RE and that an interaction of GR and HNF4α occurred at this site. Moreover, ChIP assays indicated that histone H4 acetylation of the CYP2A6 proximal promoter chromatin was increased by DEX that may allow for increased binding of HNF4α to the HNF4-RE in human hepatocytes. These findings indicate that increased expression of CYP2A6 by DEX is mediated by the GR via a nonconventional transcriptional mechanism involving interaction of HNF4α with an HNF4-RE rather than a glucocorticoid response element.


Toxicologic Pathology | 1996

Overexpression of cytochrome P-450 isoforms involved in aflatoxin B1 bioactivation in human liver with cirrhosis and hepatitis.

Gordon M. Kirby; Gerald Batist; Lesley Alpert; Esther Lamoureux; Ross G. Cameron; Moulay A. Alaoui-Jamali

Studies were carried out to test the hypothesis that inflammatory liver disease increases the expression of specific cytochrome P-450 isoenzymes involved in aflatoxin B1 (AFB) activation. The immunohistochemical expression and localization of various human cytochrome P-450 isoforms, including CYP2A6, CYP1A2, CYP3A4, and CYP2B1, were examined in normal human liver and liver with hepatitis and cirrhosis. The constitutive expression of CYP3A4 in normal liver showed a characteristic pattern of distribution in centrilobular hepatocytes, whereas CYP1A2, CYP2A6, and CYP2B1 1 were expressed uniformly throughout the liver acinus. In sections of liver infected with hepatitis B virus (HBV) or hepatitis C virus (HCV), the expression of CYP2A6 was markedly increased in hepatocytes immediately adjacent to areas of fibrosis and inflammation. CYP3A4 and CYP2B 1 were induced to a lesser degree, and expression of CYP1A2 was unaffected. In HBV-infected liver, double immunostaining revealed that overexpression of CYP2A6 occurred in hepatocytes expressing the HBV core antigen. In HCV-infected liver, CYP2A6, CYP3A4, and CYP2B 1 were overexpressed in hepatocytes with hemosiderin pigmentation. These results suggest that alterations in phenotypic expression of specific P-450 isoenzymes in hepatocytes associated with hepatic inflammation and cirrhosis might increase susceptibility to AFB genotoxicity.


Biochemical Journal | 2006

Human GSTA1-1 reduces c-Jun N-terminal kinase signalling and apoptosis in Caco-2 cells.

Laura Romero; Kimberly Andrews; Lorraine Ng; Kelly O'Rourke; Ann Maslen; Gordon M. Kirby

The effect of GSTA1-1 (glutathione S-transferase Alpha 1-1) on JNK (c-Jun N-terminal kinase) activation was investigated in Caco-2 cells in which GSTA1 expression increases with degree of confluency, and in MEF3T3 cells with Tet-Off-inducible GSTA1 expression. Comparison of GSTA1 expression in pre-confluent, confluent and 8-day post-confluent Caco-2 cells revealed progressively increasing mRNA and protein levels at later stages of confluency. Exposure of pre-confluent cells to stress conditions including IL-1beta (interleukin-1beta), H2O2 or UV irradiation resulted in marked increases in JNK activity as indicated by c-Jun phosphorylation. However, JNK activation was significantly reduced in post-confluent cells exposed to the same stresses. Western-blot analysis of GSTA1-1 protein bound to JNK protein pulled down from cellular extracts showed approx. 4-fold higher GSTA1-1-JNK complex formation in post-confluent cells compared with pre-confluent cells. However, stress conditions did not alter the amount of GSTA1-1 bound to JNK. The role of GSTA1-1 in JNK suppression was more specifically revealed in Tet-Off-inducible MEF3T3-GSTA1-1 cells in which GSTA1 overexpression significantly reduced phosphorylation of c-Jun following exposure to IL-1beta, H2O2 and UV irradiation. Finally, the incidence of tumour necrosis factor alpha/butyrate-induced apoptosis was significantly higher in pre-confluent Caco-2 cells expressing low levels of GSTA1 compared with post-confluent cells. These results indicate that GSTA1 suppresses activation of JNK signalling by a pro-inflammatory cytokine and oxidative stress and suggests a protective role for GSTA1-1 in JNK-associated apoptosis.


Molecular Pharmacology | 2007

Dexamethasone-mediated up-regulation of human CYP2A6 involves the glucocorticoid receptor and increased binding of HNF4α to the proximal promoter

Tania Onica; Kathleen Nichols; Meghan Larin; Lorraine Ng; Ann Maslen; Zdenek Dvorak; Jean-Marc Pascussi; M.J. Vilarem; Patrick Maurel; Gordon M. Kirby

Human cytochrome P450 2A6 (CYP2A6) metabolizes various clinically relevant compounds, including nicotine- and tobacco-specific procarcinogens; however, transcriptional regulation of this gene is poorly understood. We investigated the role of the glucocorticoid receptor (GR) in transcriptional regulation of CYP2A6. Dexamethasone (DEX) increased CYP2A6 mRNA and protein levels in human hepatocytes in primary culture. This effect was attenuated by the GR receptor antagonist mifepristone (RU486; 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one), suggesting that induction of CYP2A6 by DEX was mediated by the GR. In gene reporter assays, DEX caused dose-dependent increases in luciferase activity that was also prevented by RU486 and progressive truncations of the CYP2A6 promoter delineated DEX-responsiveness to a -95 to +12 region containing an hepatic nuclear factor 4 (HNF4) α response element (HNF4-RE). Mutation of the HNF4-RE abrogated HNF4α- and DEX-mediated transactivation of CYP2A6. In addition, overexpression of HNF4α increased CYP2A6 transcriptional activity by 3-fold. DEX increased HNF4α mRNA levels by 4-fold; however, the amount of HNF4α nuclear protein was unaltered. Electrophoretic mobility shift, chromatin immunoprecipitation (ChIP), and streptavidin DNA binding assays revealed that DEX increased binding of HNF4α to the HNF4-RE and that an interaction of GR and HNF4α occurred at this site. Moreover, ChIP assays indicated that histone H4 acetylation of the CYP2A6 proximal promoter chromatin was increased by DEX that may allow for increased binding of HNF4α to the HNF4-RE in human hepatocytes. These findings indicate that increased expression of CYP2A6 by DEX is mediated by the GR via a nonconventional transcriptional mechanism involving interaction of HNF4α with an HNF4-RE rather than a glucocorticoid response element.


Toxicology | 2003

Effects of lipopolysaccharide-stimulated inflammation and pyrazole-mediated hepatocellular injury on mouse hepatic Cyp2a5 expression.

W.James Gilmore; Georgy Hartmann; Micheline Piquette-Miller; Jason Marriott; Gordon M. Kirby

Murine hepatic cytochrome P450 2a5 (Cyp2a5) is induced during hepatotoxicity and hepatitis, however, the specific regulatory mechanisms have not been determined. We compared the influence of acute inflammation elicited in vivo by bacterial endotoxin lipopolysaccharide (LPS) and liver injury caused by the hepatotoxin pyrazole on hepatic Cyp2a5 expression in mice. Pyrazole treatment resulted in statistically significant increases in levels of Cyp2a5 mRNA, protein and catalytic activity by 540, 273 and 711%, respectively (P<0.05). In LPS-treated livers Cyp2a5 expression was significantly reduced compared to controls at the mRNA (46%) protein (35%), and activity (23%) levels (P<0.05). Treatment of mice with recombinant murine interleukin-1 beta and interleukin-6 had no significant effect on Cyp2a5 mRNA and protein levels. Liver injury, as assessed by serum alanine aminotransferase, was greater with pyrazole than with LPS treatment (609 vs 354% of control levels respectively). ER stress, determined by hepatic glucose regulated protein 78 (grp78) levels, was greater with pyrazole (185% of controls) than with LPS (128% of controls). In pyrazole-treated liver, overexpression of immunoreactive grp78 protein revealed that ER stress was localized to pericentral hepatocytes in which Cyp2a5 was induced. Evidence of glycogen loss and membrane damage in these cells was suggestive of oxidative damage. Moreover, vitamin E attenuated Cyp2a5 induction by pyrazole in vivo. These results suggest that induction of Cyp2a5 that has been observed in mouse models of hepatitis and hepatoxicity may be related to oxidative injury to the endoplasmic reticulum of pericentral hepatocytes rather than exposure to pro-inflammatory cytokines.


Chronobiology International | 2012

Chronomics of Pressure Overload–Induced Cardiac Hypertrophy in Mice Reveals Altered Day/Night Gene Expression and Biomarkers of Heart Disease

Elena V. Tsimakouridze; Marty Straume; Peter S. Podobed; Heather Chin; Jonathan LaMarre; Ron J. Johnson; Monica Antenos; Gordon M. Kirby; Allison Mackay; Patsy Huether; Jeremy A. Simpson; Michael J. Sole; Gerard Gadal; Tami A. Martino

There is critical demand in contemporary medicine for gene expression markers in all areas of human disease, for early detection of disease, classification, prognosis, and response to therapy. The integrity of circadian gene expression underlies cardiovascular health and disease; however time-of-day profiling in heart disease has never been examined. We hypothesized that a time-of-day chronomic approach using samples collected across 24-h cycles and analyzed by microarrays and bioinformatics advances contemporary approaches, because it includes sleep-time and/or wake-time molecular responses. As proof of concept, we demonstrate the value of this approach in cardiovascular disease using a murine Transverse Aortic Constriction (TAC) model of pressure overload–induced cardiac hypertrophy in mice. First, microarrays and a novel algorithm termed DeltaGene were used to identify time-of-day differences in gene expression in cardiac hypertrophy 8 wks post-TAC. The top 300 candidates were further analyzed using knowledge-based platforms, paring the list to 20 candidates, which were then validated by real-time polymerase chain reaction (RTPCR). Next, we tested whether the time-of-day gene expression profiles could be indicative of disease progression by comparing the 1- vs. 8-wk TAC. Lastly, since protein expression is functionally relevant, we monitored time-of-day cycling for the analogous cardiac proteins. This approach is generally applicable and can lead to new understanding of disease. (Author correspondence: [email protected])


Veterinary Immunology and Immunopathology | 2012

Proteomic analysis of plasma from Holstein cows testing positive for Mycobacterium avium subsp. paratuberculosis (MAP).

Qiumei You; Chris P. Verschoor; Sameer D. Pant; Joseph Macri; Gordon M. Kirby; Niel A. Karrow

Johnes disease (JD) is a widespread and economically important chronic inflammatory disease of the small intestine of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Although there are several techniques available for diagnosis of JD, their sensitivity is questionable. New proteome profiling methods, such as serum/plasma protein fingerprinting by 2-Dimensional Fluorescence Difference Gel Electrophoresis (2D-DIGE), may therefore be useful for identifying novel protein biomarkers of MAP infection. In this study, plasma samples were collected from 380 Holstein cows and screened for the presence of MAP infection using the M.pt. Johnes antibody Kit (IDEXX). Five negative (MAP-), and 5 strongly positive (MAP+) cows were selected for proteomic analysis. Highly abundant proteins were depleted from the plasma samples using the ProteoMiner technology (Bio-Rad) to enhance the resolution of low abundance proteins. Plasma samples from MAP-, MAP+, and a pooled internal control were labelled with different fluorescent dyes and separated based on their isoelectrical point (IP) and then their molecular weight. Gel images of the fluorescent plasma protein maps were acquired using a Typhoon scanner and analyzed using the DeCyder software. Proteins that were differentially expressed were excised from the gels, trypsin digested, and subjected to MS/MS analysis for identification. Six proteins were identified as being up-regulated at least 2-fold in MAP+ cows including: transferrin, gelsolin isoforms α & β (actin binding protein - ABP), complement subcomponent C1r, complement component C3, amine oxidase - copper containing 3 (AOC3), and coagulation factor II (thrombin) (p<0.05). Two proteins that were down-regulated approximately 2-fold in the MAP+ cows included coagulation factor XIII -B polypeptide (COAFXIII), and fibrinogen γ chain (FGG) and its precursor.


Current Drug Metabolism | 2011

CYP2A5 Induction and Hepatocellular Stress: An Adaptive Response to Perturbations of Heme Homeostasis

Gordon M. Kirby; Kathleen Nichols; Monica Antenos

Unlike most cytochrome P450 (CYP) enzymes, murine hepatic CYP2A5 is induced during pathological conditions that result in liver injury including hepatotoxicity mediated by xenobiotics, hepatitis caused by various microbial agents and liver neoplasia. Since CYP2A5 metabolizes various important xenobiotics including nicotine and pro-carcinogens such as nitrosamines and aflatoxin B(1), altered gene expression could affect tobacco addiction, hepatotoxicity and hepatocarcinogenesis. This article synthesizes the current knowledge concerning hepatic expression of Cyp2a5 including the transcriptional and post-transcriptional regulatory mechanisms, pathophysiological conditions associated with enzyme induction such as oxidative and endoplasmic reticulum stress and altered lipid and energy homeostasis as well as the known exogenous and putative endogenous substrates. Knowledge of the stimuli responsible for the unique overexpression of CYP2A5 during liver injury may provide clues to a functional role for this enzyme and the impact of variable CYP2A5 expression on xenobiotic metabolism and toxicity, disease development and the adaptive response to hepatocellular stress.


Molecular Pharmacology | 2006

Chemical Inducers of Rodent Glutathione S-Transferases Down-Regulate Human GSTA1 Transcription through a Mechanism Involving Variant Hepatic Nuclear Factor 1-C

Laura Romero; Lorraine Ng; Gordon M. Kirby

The regulation of human GSTA1 by chemical inducers of rodent glutathione S-transferases (GSTs) and the regulatory role of hepatic nuclear factor (HNF) 1 was investigated in Caco-2 cells. Treatment of preconfluent and confluent cells with 12-O-tetra-decanoyl phorbol-13-acetate (TPA), 3-methylcholanthrene (3-MC), 2-tert-butyl-4-hydroxy-anisol (BHA), and phenobarbital (PB) reduced GSTA1 mRNA levels in preconfluent and confluent cells. Constitutive levels of GSTA1 and HNF1α mRNA were elevated 6.25- and 50-fold, respectively, in postconfluent cells compared with preconfluent cells. Overexpression of HNF1α in cells transfected with a GSTA1 promoter-luciferase construct (pGSTA1-1591-luc) resulted in dose-related increases in reporter activity not observed when an HNF1 response element (HRE) in the proximal promoter was mutated (pGSTA1-ΔHNF1-luc). TPA, 3-MC, BHA, and PB reduced HNF1α mRNA levels in preconfluent and confluent cells and caused marked reductions in luciferase activity in pGSTA1-1591-luc transfectants. Transcriptional repression was abrogated with pGSTA1-ΔHNF1-luc and with truncated constructs that eliminated a functional HRE. Moreover, cotransfection of pHNF1α with pGSTA1-1591-luc partially prevented the reduction in luciferase activity by rodent GST inducers. Immunoblot analysis of DNA binding studies indicate that variant (v)HNF1-C binding to HRE is increased in preconfluent cells treated with 3-MC, BHA, and PB. In addition, overexpression of vHNF1-C repressed GSTA1 transcriptional activity in luciferase reporter assays. Finally, treatment with 3-MC, BHA, and PB increased vHNF1-C mRNA levels in preconfluent cells. These data demonstrate that repression of human GSTA1 transcription by chemical inducers of rodent GSTs occurs, in part, through a mechanism involving the repressive action of vHNF1-C.


Toxicology and Applied Pharmacology | 2013

Cytochrome P450 2A5 and bilirubin: mechanisms of gene regulation and cytoprotection.

Sangsoo Daniel Kim; Monica Antenos; E. James Squires; Gordon M. Kirby

Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1-6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1-6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1-6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity.

Collaboration


Dive into the Gordon M. Kirby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan LaMarre

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge