Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gordon S. Currie is active.

Publication


Featured researches published by Gordon S. Currie.


Journal of Medicinal Chemistry | 2014

Discovery of a Potent and Selective EGFR Inhibitor (AZD9291) of Both Sensitizing and T790M Resistance Mutations That Spares the Wild Type Form of the Receptor

M. Raymond V. Finlay; Mark J. Anderton; Susan Ashton; Peter Ballard; Paul A. Bethel; Matthew R. Box; Robert Hugh Bradbury; Simon Brown; Sam Butterworth; Andrew Campbell; Christopher G. Chorley; Nicola Colclough; Darren Cross; Gordon S. Currie; Matthew Grist; Lorraine Hassall; George B. Hill; Daniel S. James; Michael James; Paul D. Kemmitt; Teresa Klinowska; Gillian M. Lamont; Scott Lamont; Nathaniel G. Martin; Heather L. McFarland; Martine J. Mellor; Jonathon P. Orme; David Perkins; Paula Perkins; Graham Richmond

Epidermal growth factor receptor (EGFR) inhibitors have been used clinically in the treatment of non-small-cell lung cancer (NSCLC) patients harboring sensitizing (or activating) mutations for a number of years. Despite encouraging clinical efficacy with these agents, in many patients resistance develops leading to disease progression. In most cases, this resistance is in the form of the T790M mutation. In addition, EGFR wild type receptor inhibition inherent with these agents can lead to dose limiting toxicities of rash and diarrhea. We describe herein the evolution of an early, mutant selective lead to the clinical candidate AZD9291, an irreversible inhibitor of both EGFR sensitizing (EGFRm+) and T790M resistance mutations with selectivity over the wild type form of the receptor. Following observations of significant tumor inhibition in preclinical models, the clinical candidate was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, accompanied by an encouraging safety profile.


Journal of the American Chemical Society | 2008

Catalytic Enantioselective Intermolecular Hydroacylation : Rhodium-Catalyzed Combination of β-S-Aldehydes and 1,3.Disubstituted Allenes

James D. Osborne; Helen E. Randell-Sly; Gordon S. Currie; Andrew R. Cowley; Michael C. Willis

A rhodium(I) catalyst incorporating the Me-DuPhos ligand promotes enantioselective intermolecular hydroacylation between beta-S-aldehydes and 1,3-disubstituted allenes. The nonconjugated enone products are obtained in good yields and with high enantioselectivities.


Journal of Medicinal Chemistry | 2013

Discovery of 4-Amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an Orally Bioavailable, Potent Inhibitor of Akt Kinases.

Matt Addie; Peter Ballard; David Buttar; Claire Crafter; Gordon S. Currie; Barry R. Davies; J.E. Debreczeni; Hannah Dry; Philippa Dudley; Ryan Greenwood; Paul D. Johnson; Jason Grant Kettle; Clare Lane; Gillian M. Lamont; Andrew G. Leach; Richard William Arthur Luke; Jeff Morris; Donald J. Ogilvie; Ken Page; Martin Pass; Stuart E. Pearson; Linette Ruston

Wide-ranging exploration of analogues of an ATP-competitive pyrrolopyrimidine inhibitor of Akt led to the discovery of clinical candidate AZD5363, which showed increased potency, reduced hERG affinity, and higher selectivity against the closely related AGC kinase ROCK. This compound demonstrated good preclinical drug metabolism and pharmacokinetics (DMPK) properties and, after oral dosing, showed pharmacodynamic knockdown of phosphorylation of Akt and downstream biomarkers in vivo, and inhibition of tumor growth in a breast cancer xenograft model.


Journal of Medicinal Chemistry | 2015

Optimization of a Novel Binding Motif to (E)-3-(3,5-Difluoro-4-((1R,3R)-2-(2-Fluoro-2-Methylpropyl)-3-Methyl-2, 3,4,9-Tetrahydro-1H-Pyrido[3,4-B]Indol-1-Yl)Phenyl)Acrylic Acid (Azd9496), a Potent and Orally Bioavailable Selective Estrogen Receptor Downregulator and Antagonist.

Chris De Savi; Robert Hugh Bradbury; Alfred A. Rabow; Richard A. Norman; Camila de Almeida; David M. Andrews; Peter Ballard; David Buttar; Rowena Callis; Gordon S. Currie; Jon Owen Curwen; Christopher D. Davies; Craig S. Donald; Lyman Feron; Helen Gingell; Steven C. Glossop; Barry R. Hayter; Syeed Hussain; Galith Karoutchi; Scott Lamont; Philip A. MacFaul; Thomas A. Moss; Stuart E. Pearson; Michael Tonge; Graeme Walker; Hazel M. Weir; Zena Wilson

The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.


Chemical Communications | 1996

Asymmetry in the boronic acid Mannich reaction: diastereocontrolled addition to chiral iminium species derived from aldehydes and (S)-5-phenylmorpholin-2-one

Laurence M. Harwood; Gordon S. Currie; Michael G. B. Drew; Richard William Arthur Luke

(S)-5-Phenylmorpholin-2-one† and a range of aliphatic aldehydes form chiral iminium intermediates which undergo diastereoselective Mannich reactions with 2-furylboronic acid. Single crystal X-ray analysis of methylated derivative 4 derived from major adduct 2g confirms the stereochemical course of the reaction.


Journal of Medicinal Chemistry | 2015

Discovery of AZD3147: A Potent, Selective Dual Inhibitor of mTORC1 and mTORC2

Kurt Gordon Pike; Jeff Morris; Linette Ruston; Sarah L. Pass; Ryan Greenwood; Emma J. Williams; Julie Demeritt; Janet D. Culshaw; Kristy Gill; Martin Pass; M. Raymond V. Finlay; Catherine J. Good; Craig A. Roberts; Gordon S. Currie; Kevin Blades; Jonathan M. Eden; Stuart E. Pearson

High throughput screening followed by a lead generation campaign uncovered a novel series of urea containing morpholinopyrimidine compounds which act as potent and selective dual inhibitors of mTORC1 and mTORC2. We describe the continued compound optimization campaign for this series, in particular focused on identifying compounds with improved cellular potency, improved aqueous solubility, and good stability in human hepatocyte incubations. Knowledge from empirical SAR investigations was combined with an understanding of the molecular interactions in the crystal lattice to improve both cellular potency and solubility, and the composite parameters of LLE and pIC50-pSolubility were used to assess compound quality and progress. Predictive models were employed to efficiently mine the attractive chemical space identified resulting in the discovery of 42 (AZD3147), an extremely potent and selective dual inhibitor of mTORC1 and mTORC2 with physicochemical and pharmacokinetic properties suitable for development as a potential clinical candidate.


Cancer Research | 2015

Abstract DDT01-03: Discovery and pre-clinical pharmacology of AZD9496: An oral, selective estrogen receptor down-regulator (SERD)

Hazel M. Weir; Mandy Lawson; Rowena Callis; Michael Hulse; Michael Tonge; Gareth Davies; Graeme Walker; Rachel Rowlinson; Jon Owen Curwen; Zena Wilson; Steve Powell; Robert Hugh Bradbury; Alfred A. Rabow; Craig S. Donald; David Buttar; Richard A. Norman; Camila de Almeida; Peter Ballard; Gordon S. Currie; David M. Andrews; Graham Richmond; Anne Marie Mazzola; Ermira Pazolli; Brendon Ladd; Celina D'Cruz; Chris De Savi

With over 70% of breast cancers expressing estrogen receptor alpha protein (ERα), treatment with either anti-hormonal therapies that directly block ERα function (e.g. tamoxifen) or therapies that block the production of estrogen itself (e.g. anastrozole) have proven to be effective treatments for the disease. Following the discovery of the ERα antagonist tamoxifen in the 1960s, identification of the selective estrogen receptor down-regulator (SERD) fulvestrant represented a further step forward in the treatment of advanced ER+ breast cancer, especially in the endocrine resistance setting where ERα appears to be activated by a ligand independent route through other growth factor signaling pathways. In addition, fulvestrant has also shown significant overall survival (OS) results in the FIRST trial comparing 500 mg fulvestrant with anastrozole in first line advanced ER+ve patients where the majority of patients had not received prior endocrine therapy. Given fulvestrant9s low bioavailability following intramuscular injection and the levels of ERα protein in clinical samples after treatment, the question remains as to whether an agent that could achieve higher steady state levels of drug more rapidly and drive further decreases in ERα levels would give enhanced clinical benefit. We have identified a novel, potent, non-steroidal SERD that can be administered orally and could yield improved exposure and clinical benefit. This presentation will describe the discovery and pre-clinical pharmacology of AZD9496, a small molecule that can antagonise ERα and induce receptor degradation in breast cancer cell lines at picomolar concentrations. The good oral pharmacokinetic properties of the compound in pre-clinical species led to significant tumor growth inhibition in an endocrine sensitive MCF-7 xenograft model at a dose of 5 mg/kg and >90% reduction in ER-regulated, progesterone receptor (PR) levels. Tumor regressions were seen in a long term estrogen deprived (LTED) in vivo model, representing the aromatase resistant setting, and corresponded with significant reductions in ERα protein levels, >90% at 5 mg/kg dose. AZD9496 also showed antagonist and down-regulation activity against ERα mutant protein both in vitro and in vivo. These findings strongly supported selection of AZD9496 as a clinical candidate for the treatment of ER+ve breast cancer and the drug is now under evaluation in a Phase 1 clinical trial. Citation Format: Hazel Weir, Mandy Lawson, Rowena Callis, Michael Hulse, Michael Tonge, Gareth Davies, Graeme Walker, Rachel Rowlinson, Jon Curwen, Zena Wilson, Steve Powell, Robert Bradbury, Alfred Rabow, Craig Donald, David Buttar, Richard Norman, Camila de Almeida, Peter Ballard, Gordon Currie, David Andrews, Graham Richmond, Anne Marie Mazzola, Ermira Pazolli, Brendon Ladd, Celina D9Cruz, Chris De Savi. Discovery and pre-clinical pharmacology of AZD9496: An oral, selective estrogen receptor down-regulator (SERD). [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr DDT01-03. doi:10.1158/1538-7445.AM2015-DDT01-03


Cancer Research | 2011

Abstract 4478: Discovery of AZD5363, an orally bioavailable, potent ATP-competitive inhibitor of AKT kinases

Richard William Arthur Luke; Matthew S. Addie; Matthew R. Box; David Buttar; Claire Crafter; Gordon S. Currie; Sabina Cosulich; Barry R. Davies; Philippa Dudley; Ryan Greenwood; Paul D. Johnson; Hannah Greenwood; Gillian M. Lamont; Clare Lane; Ken Page; Stuart E. Pearson; Linette Ruston

Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL AKT is a key node in the most frequently de-regulated signaling pathway in human cancer and has been shown to mediate resistance to a range of cytotoxic, anti-hormonal and targeted therapies. We decided to explore inhibitors of AKT as potential new anti-cancer therapeutics. Here we disclose for the first time the discovery and structure of AZD5363, an orally bioavailable, potent ATP-competitive inhibitor of AKT. We evaluated a range of chemical starting points arising from our previous collaboration with the Institute of Cancer Research and Astex Therapeutics Ltd. Ultimately AZD5363 was discovered following a long journey that started from a pyrrolopyrimidine series of compounds. Our first challenge was to improve potency and a second challenge was to improve ROCK selectivity. ROCK is an AGC kinase like AKT but is involved in regulation of vascular tone and thus blood pressure. Extensive SAR studies exploring the series revealed that achieving selectivity over ROCK while retaining AKT potency was quite challenging. Eventually we discovered ways which could improve both selectivity and potency. However, these compounds had significant activity against the hERG ion channel which is implicated in the development of Torsades de Pointes and cardiac death. The next phase of work therefore had to focus on reducing hERG activity, while at the same time not adversely impacting either AKT potency or ROCK selectivity. Finally we discovered that introduction of a key substituent group provided a compound that achieved reduced hERG potency and, surprisingly, also achieved a further small improvement in both AKT potency and ROCK selectivity. This compound was AZD5363. A crystal structure of AZD5363 bound to AKT has revealed some of the key interactions that may contribute to its potency. For example, the pyrrolopyrimidine appears to form hydrogen bonds to the hinge region of the kinase. AZD5363 inhibits all known AKT isoforms with a potency of <10 nM and inhibits phosphorylation of the AKT substrate, PRAS40 in BT474c cells with a potency of 0.31 μM. Activity in in vivo pharmacodynamic and xenograft models has also been demonstrated. A synthetic route suitable for scale-up has been developed. In conclusion, AZD5363 is a potent inhibitor of AKT in vitro and in cells. It has good hERG and ROCK selectivity. It has pharmacodynamic and xenograft activity in vivo. AZD5363 has potential in cancer therapy and is currently in phase 1 clinical trials. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 4478. doi:10.1158/1538-7445.AM2011-4478


Bioorganic & Medicinal Chemistry Letters | 2005

Discovery, synthesis and biological evaluation of novel glucokinase activators.

Darren Mckerrecher; Joanne V. Allen; Suzanne S. Bowker; Scott Boyd; Peter William Rodney Caulkett; Gordon S. Currie; Christopher D. Davies; Mark L. Fenwick; Harold Gaskin; Emma Grange; Rod B. Hargreaves; Barry R. Hayter; Roger James; Keith M. Johnson; Craig Johnstone; Clifford David Jones; Sarah Lackie; John Wall Rayner; Rolf Peter Walker


Journal of Organic Chemistry | 2006

Rhodium-Catalyzed Intermolecular Chelation Controlled Alkene and Alkyne Hydroacylation: Synthetic Scope of β-S-Substituted Aldehyde Substrates

Michael C. Willis; Helen E. Randell-Sly; Robert L. Woodward; Steven J. McNally; Gordon S. Currie

Collaboration


Dive into the Gordon S. Currie's collaboration.

Researchain Logo
Decentralizing Knowledge