Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gorka Basañez is active.

Publication


Featured researches published by Gorka Basañez.


Cancer Research | 2008

Mitochondrial Cholesterol Contributes to Chemotherapy Resistance in Hepatocellular Carcinoma

Joan Montero; Albert Morales; Laura Llacuna; Josep M. Lluis; Oihana Terrones; Gorka Basañez; Bruno Antonsson; Jesús Prieto; Carmen García-Ruiz; Anna Colell; José C. Fernández-Checa

Cholesterol metabolism is deregulated in carcinogenesis, and cancer cells exhibit enhanced mitochondrial cholesterol content whose role in cell death susceptibility and cancer therapy has not been investigated. Here, we describe that mitochondria from rat or human hepatocellular carcinoma (HC) cells (HCC) or primary tumors from patients with HC exhibit increased mitochondrial cholesterol levels. HCC sensitivity to chemotherapy acting via mitochondria is enhanced upon cholesterol depletion by inhibition of hydroxymethylglutaryl-CoA reductase or squalene synthase (SS), which catalyzes the first committed step in cholesterol biosynthesis. HCC transfection with siRNA targeting the steroidogenic acute regulatory protein StAR, a mitochondrial cholesterol-transporting polypeptide which is overexpressed in HCC compared with rat and human liver, sensitized HCC to chemotherapy. Isolated mitochondria from HCC with increased cholesterol levels were resistant to mitochondrial membrane permeabilization and release of cytochrome c or Smac/DIABLO in response to various stimuli including active Bax. Similar behavior was observed in cholesterol-enriched mitochondria or liposomes and reversed by restoring mitochondrial membrane order or cholesterol extraction. Moreover, atorvastatin or the SS inhibitor YM-53601 potentiated doxorubicin-mediated HCC growth arrest and cell death in vivo. Thus, mitochondrial cholesterol contributes to chemotherapy resistance by increasing membrane order, emerging as a novel therapeutic niche in cancer therapy.


Gastroenterology | 2008

Mechanism of Mitochondrial Glutathione-Dependent Hepatocellular Susceptibility to TNF Despite NF-κB Activation

Montserrat Marí; Anna Colell; Albert Morales; Francisco Caballero; Anna Moles; Anna Fernández; Oihana Terrones; Gorka Basañez; Bruno Antonsson; Carmen García Ruiz; José C. Fernández–Checa

BACKGROUND & AIMS Nuclear factor kappaB (NF-kappaB) is the master regulator of tumor necrosis factor (TNF) susceptibility. Although mitochondrial glutathione (mGSH) depletion was shown to sensitize hepatocytes to TNF despite NF-kappaB activation, the mechanisms involved, particularly the role of Bax oligomerization and mitochondrial outer membrane (MOM) permeabilization, 2 critical steps in cell death, remained unexplored. METHODS TNF signaling at the premitochondrial and mitochondrial levels was analyzed in primary mouse hepatocytes with or without mGSH depletion. RESULTS Unexpectedly, we observed that TNF activates caspase-8 independently of NF-kappaB inactivation, causing Bid cleavage and mitochondrial Bax oligomerization. However, their predicted consequences on MOM permeabilization, cytochrome c release, caspase-3 activation, and hepatocellular death occurred only on mGSH depletion. These events were preceded by stimulated mitochondrial reactive oxygen species that predominantly oxidized cardiolipin, changes not observed in acidic sphingomyelinase (ASMase)(-/-) hepatocytes. Oxidized cardiolipin potentiated oligomerized Bax-induced MOM-like liposome permeabilization by restructuring the lipid bilayer, without effect on membrane Bax insertion or oligomerization. ASMase(-/-) mice with mGSH depletion by cholesterol loading were resistant to TNF-induced liver injury in vivo. CONCLUSIONS Thus, MOM-localized oligomeric Bax is not sufficient for TNF-induced MOM permeabilization and cell death requiring mGSH-controlled ASMase-mediated mitochondrial membrane remodeling by oxidized cardiolipin generation.


Biochimica et Biophysica Acta | 2010

Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death.

Joan Montero; Montserrat Marí; Anna Colell; Albert Morales; Gorka Basañez; Carmen García-Ruiz; José C. Fernández-Checa

Mitochondria are known to actively regulate cell death with the final phenotype of demise being determined by the metabolic and energetic status of the cell. Mitochondrial membrane permeabilization (MMP) is a critical event in cell death, as it regulates the degree of mitochondrial dysfunction and the release of intermembrane proteins that function in the activation and assembly of caspases. In addition to the crucial role of proapoptotic members of the Bcl-2 family, the lipid composition of the mitochondrial membranes is increasingly recognized to modulate MMP and hence cell death. The unphysiological accumulation of cholesterol in mitochondrial membranes regulates their physical properties, facilitating or impairing MMP during Bax and death ligand-induced cell death depending on the level of mitochondrial GSH (mGSH), which in turn regulates the oxidation status of cardiolipin. Cholesterol-mediated mGSH depletion stimulates TNF-induced reactive oxygen species and subsequent cardiolipin peroxidation, which destabilizes the lipid bilayer and potentiates Bax-induced membrane permeabilization. These data suggest that the balance of mitochondrial cholesterol to peroxidized cardiolipin regulates mitochondrial membrane properties and permeabilization, emerging as a rheostat in cell death.


FEBS Letters | 1995

Topological properties of two cubic phases of a phospholipid : cholesterol: diacylglycerol aqueous system and their possible implications in the phospholipase C‐induced liposome fusion

José-Luis Nieva; Alicia Alonso; Gorka Basañez; Félix M. Goñi; A. Gulik; R. Vargas; V. Luzzati

Water dispersions of phospholipid: cholesterol: diacylglycerol may, under certain conditions, originate either the lipid‐ and water‐permeable Q224 cubic phase, or the lipid‐permeable but water‐impermeable Q227 cubic phase. These results are discussed within the framework of the phospholipase C‐induced fusion of liposomes [Nieva et al. (1993) Biochemistry 32, 1054]. It is suggested that the cubic phases Q224 and Q227 represnt two classes of lipid organization, one promoting, the other hindering the mixing of aqueous contents that is characteristic of membrane fusion. In this context, inverted micelles appear to be the end point of the fusion process, rather than fusion intermediates.


Journal of Biological Chemistry | 2013

Proapoptotic Bax and Bak Proteins Form Stable Protein-permeable Pores of Tunable Size

Stephanie Bleicken; Olatz Landeta; Ane Landajuela; Gorka Basañez; Ana J. García-Sáez

Background: During apoptosis Bax/Bak release differently sized proteins out of the mitochondria. Results: The size of Bax/Bak pores depends on protein concentration. Conclusion: Bax/Bak form stable toroidal pores tunable in size. Significance: Pore size-tuning constitutes a new level for the regulation of Bax/Bak activity. The Bcl-2 proapoptotic proteins Bax and Bak mediate the permeabilization of the mitochondrial outer membrane during apoptosis. Current models consider that Bax and Bak form pores at the mitochondrial outer membrane that are responsible for the release of cytochrome c and other larger mitochondrial apoptotic factors (i.e. Smac/DIABLO, AIF, and endoglycosidase G). However, the properties and nature of Bax/Bak apoptotic pores remain enigmatic. Here, we performed a detailed analysis of the membrane permeabilizing activity of Bax and Bak at the single vesicle level. We directly visualized that cBid-activated Bax and BakΔC21 can form membrane pores large enough to release not only cytochrome c, but also allophycocyanine, a protein of 104 kDa. Interestingly, the size of Bax and BakΔC21 pores is not constant, as typically observed in purely proteinaceous channels, but evolves with time and depends on protein concentration. We found that Bax and BakΔC21 formed long-lived pores, whose areas changed with the amount of Bax/BakΔC21 but not with cardiolipin concentration. Altogether, our results demonstrate that Bax and BakΔC21 follow similar mechanisms of membrane permeabilization characterized by the formation of protein-permeable pores of dynamic size, in agreement with the proteolipidic nature of these apoptotic pores.


PLOS ONE | 2014

Specific Interaction with Cardiolipin Triggers Functional Activation of Dynamin-Related Protein 1

Itsasne Bustillo-Zabalbeitia; Sylvie Montessuit; Etienne Raemy; Gorka Basañez; Oihana Terrones; Jean-Claude Martinou

Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid–interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.


Journal of Biological Chemistry | 2011

Reconstitution of Proapoptotic BAK Function in Liposomes Reveals a Dual Role for Mitochondrial Lipids in the BAK-driven Membrane Permeabilization Process

Olatz Landeta; Ane Landajuela; David Gil; Stefka G. Taneva; Carmelo DiPrimo; Begoña Sot; Mikel Valle; Vadim A. Frolov; Gorka Basañez

BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that “primes” BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.


Arthritis & Rheumatism | 2010

Liposome-Bound APO2L/TRAIL Is an Effective Treatment in a Rabbit Model of Rheumatoid Arthritis

Luis Martínez-Lostao; Felí´cito Garcí´a-Alvarez; Gorka Basañez; Elena Alegre-Aguarón; Paula Desportes; Luis Larrad; Javier Naval; Marí´a José Martí´nez-Lorenzo; Alberto Anel

OBJECTIVE We previously observed that T lymphocytes present in synovial fluid (SF) from patients with rheumatoid arthritis (RA) were sensitive to APO2L/TRAIL. In addition, there was a drastic decrease in the amount of bioactive APO2L/TRAIL associated with exosomes in SF from RA patients. This study was undertaken to evaluate the effectiveness of bioactive APO2L/TRAIL conjugated with artificial lipid vesicles resembling natural exosomes as a treatment in a rabbit model of antigen-induced arthritis (AIA). METHODS We used a novel Ni(2+)-(N-5-amino-1-carboxypentyl)-iminodiacetic acid)-containing liposomal system. APO2L/TRAIL bound to liposomes was intraarticularly injected into the knees of animals with AIA. One week after treatment, rabbits were killed, and arthritic synovial tissue was analyzed. RESULTS Tethering APO2L/TRAIL to the liposome membrane increased its bioactivity and resulted in more effective treatment of AIA compared with soluble, unconjugated APO2L/TRAIL, with substantially reduced synovial hyperplasia and inflammation in rabbit knee joints. The results of biophysical studies suggested that the increased bioactivity of APO2L/TRAIL associated with liposomes was due to the increase in the local concentration of the recombinant protein, augmenting its receptor crosslinking potential, and not to conformational changes in the protein. In spite of this increase in bioactivity, the treatment lacked systemic toxicity and was not hepatotoxic. CONCLUSION Our findings indicate that binding APO2L/TRAIL to the liposome membrane increases its bioactivity and results in effective treatment of AIA.


PLOS Biology | 2012

A new view of the lethal apoptotic pore.

Gorka Basañez; Lucian Soane; J. Marie Hardwick

Cell death by apoptosis is indispensable for proper development and tissue homeostasis in all multicellular organisms, and its deregulation plays a key role in cancer and many other diseases. A crucial event in apoptosis is the formation of protein-permeable pores in the outer mitochondrial membrane that release cytochrome c and other apoptosis-promoting factors into the cytosol. Research efforts over the past two decades have established that apoptotic pores require BCL-2 family proteins, with the proapoptotic BAX-type proteins being direct effectors of pore formation. Accumulating evidence indicates that other cellular components also cooperate with BCL-2 family members to regulate the apoptotic pore. Despite this knowledge, the molecular pathway leading to apoptotic pore formation at the outer mitochondrial membrane and the precise nature of this outer membrane pore remain enigmatic. In this issue of PLOS Biology, Kushnareva and colleagues describe a novel kinetic analysis of the dynamics of BAX-dependent apoptotic pore formation recapitulated in native mitochondrial outer membranes. Their study reveals the existence of a hitherto unknown outer mitochondrial membrane factor that is critical for BAX-mediated apoptotic pore formation, and challenges the currently popular view that the apoptotic pore is a purely proteinaceous multimeric assembly of BAX proteins. It also supports the notion that membrane remodeling events are implicated in the formation of a lipid-containing apoptotic pore.


Journal of Biological Chemistry | 2009

Endophilin B1/Bif-1 Stimulates BAX Activation Independently from Its Capacity to Produce Large Scale Membrane Morphological Rearrangements

Aitor Etxebarria; Oihana Terrones; Hirohito Yamaguchi; Ane Landajuela; Olatz Landeta; Bruno Antonsson; Hong-Gang Wang; Gorka Basañez

Endophilin B1/BAX-interacting factor 1 (Bif-1) is a protein that cooperates with dynamin-like protein 1 (DLP1/Drp1) to maintain normal mitochondrial outer membrane (MOM) dynamics in healthy cells and also contributes to BAX-driven MOM permeabilization (MOMP), the irreversible commitment point to cell death for the majority of apoptotic stimuli. However, despite its importance, exactly how Bif-1 fulfils its proapoptotic role is unknown. Here, we demonstrate that the stimulatory effect of Bif-1 on BAX-driven MOMP and on BAX conformational activation observed in intact cells during apoptosis can be recapitulated in a simplified system consisting of purified proteins and MOM-like liposomes. In this reconstituted model system the N-BAR domain of Bif-1 reproduced the stimulatory effect of Bif-1 on functional BAX activation. This process was dependent on physical interaction between Bif-1 N-BAR and BAX as well as on the presence of the mitochondrion-specific lipid cardiolipin. Despite that Bif-1 N-BAR produced large scale morphological rearrangements in MOM-like liposomes, this phenomenon could be separated from functional BAX activation. Furthermore, DLP1 also caused global morphological changes in MOM-like liposomes, but DLP1 did not stimulate BAX-permeabilizing function in the absence or presence of Bif-1. Taken together, our findings not only provide direct evidence for a functional interplay between Bif-1, BAX, and cardiolipin during MOMP but also add significantly to the growing body of evidence indicating that components of the mitochondrial morphogenesis machinery possess proapoptotic functions that are independent from their recognized roles in normal mitochondrial dynamics.

Collaboration


Dive into the Gorka Basañez's collaboration.

Top Co-Authors

Avatar

Alicia Alonso

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Félix M. Goñi

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Oihana Terrones

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Albert Morales

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ane Landajuela

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Carmen García-Ruiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Olatz Landeta

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José C. Fernández-Checa

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anna Colell

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge