Goutam Rath
Punjab Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Goutam Rath.
Journal of Drug Targeting | 2012
Basant Malik; Amit K. Goyal; Tanmay S. Markandeywar; Goutam Rath; Foziyah Zakir; Suresh P. Vyas
Present work was envisaged to develop novel M-cell targeted polymeric particles that are capable of protecting the antigen from harsh gastric conditions. Ulex europaeus agglutinin (UEA-1) lectin was anchored for selective delivery of antigen to gut-associated lymphoid tissue (GALT). In the present investigation, chitosan nanoparticles were prepared by ionic gelation followed by antigen (bovine serum albumin, BSA) adsorption. Developed nanoparticles were further coated by UEA-1 lectin conjugated alginate and characterized for size, shape, zeta-potential, entrapment efficiency, and in vitro release. The immunological response of the developed system were performed in Balb/c mice and compared with aluminium hydroxide gel-based conventional vaccine. Results indicated that immunization with UEA-1 lectin conjugated alginate-coated particles induces efficient systemic as well as mucosal immune responses against BSA compared to other formulations. Aluminium-based vaccine dominated throughout the study, while failed in case of mucosal antibody. Additionally, IgG1 and IgG2a isotypes were determined to confirm the TH1/TH2 mixed immune response. The developed formulation exhibited superior systemic response along with dominating mucosal immunity. These data demonstrate the potential of UEA-alginate-coated nanoparticles as effective delivery system via oral route.
International Journal of Pharmaceutics | 2014
K. Kataria; Ashish Gupta; Goutam Rath; R.B. Mathur; Sanjay R. Dhakate
Acute injuries or wound is required the fast delivery of drug to control infections without any side effect. In this direction in the present investigation, antibiotic ciprofloxacin loaded hydrophilic biodegradable poly vinyl alcohol (PVA) and sodium alginate (NaAlg) electrospun composite nanofiber based transdermal patch was developed for local delivery of antibiotic drug. The antibiotic drug ciprofloxacin was loaded in it by active loading. The drug entrapped in the composite nanofibers was confirmed by the scanning electron microscopy and swelling behavior. The in vivo studies were carried on male rabbits by using the drug loaded and unloaded composite nanofibers transdermal patch and marketed one. It is observed that, in vitro activity provides a sustained and controlled release pattern of the drug from transdermal patch. The mechanism of drug release was also studied using different models. The nanofiber transdermal patch follows the Higuchi and Korsmeyer-Peppas model for drug release. The in vivo studies demonstrate that, wound healing takes place in less time as compared drug unloaded patch. Hydroxyproline produced in wound bed with time shows that it content is maximum in case drug loaded PAV-NaAlg patch. This demonstrates that wound healing rate is higher in case drug loaded PVA-NaAlg transdermal patch.
European Journal of Pharmaceutical Sciences | 2014
Gagandeep; Tarun Garg; Basant Malik; Goutam Rath; Amit K. Goyal
In the present work polymeric nano-fiber patches was developed for the effective treatment of glaucoma using timolol maleate and dorzolamide hydrochloride as model drugs. The nano-fibers were prepared by electrospinning technique and were characterized on the basis of fiber diameter, morphology, entrapment efficiency, mucoadhesive strength, and drug release behavior, etc. Final formulations were inserted in the cul-de-sac of glaucoma induced rabbits and the efficacy of the formulation was evaluated. The results clearly indicated the potential of the developed formulation for occur drug delivery. There was a significant fall in the intraocular pressure compared to commercial eye drops.
Drug Delivery | 2016
Harneet Marwah; Tarun Garg; Amit K. Goyal; Goutam Rath
Abstract Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.
Drug Delivery | 2016
Deeksha Joshi; Tarun Garg; Amit K. Goyal; Goutam Rath
Abstract Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10–15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body’s immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis.
Drug Delivery | 2015
Gagan Goyal; Tarun Garg; Basant Malik; Gaurav Chauhan; Goutam Rath; Amit K. Goyal
Abstract Benzoyl peroxide (BPO) is generally considered as first line treatment against acne. Low water solubility and formation of larger clusters and limited skin permeation upon topical application necessitates the application of high amount of drug for desired action which leads to induction of skin irritation. In the present study, we developed BPO-loaded niosomal formulation to improve its permeation through skin. The niosomes were further loaded in the carbopol gel to improve contact time. The results of the skin permeation study, skin retention study revealed that niosomes can effectively improve the drug permeation through skin. Application of niosomal gel significantly reduced the bacterial load after a treatment of four days. This reduction in bacterial load was further resulted in a significant reduction in the inflammation with minimal skin irritation compared with plain drug and the plain niosomal formulation.
Drug Delivery | 2016
Himmat Singh Johal; Tarun Garg; Goutam Rath; Amit K. Goyal
Abstract Vaginal candidiasis or vulvovaginal candidiasis (VC) is a common mucosal infection of vagina, mainly caused by Candida species. The major symptoms of VC are dyspareunia, pruritis, itching, soreness, vagina as well as vulvar erythema and edema. Most common risk factors that lead to the imbalance in the vaginal micro biota are the use of antibiotics, pregnancy, diabetes mellitus, immuno suppression as in AIDS or HIV patients, frequent sexual intercourse, spermicide and intra-uterine devices and vaginal douching. Various anti-fungal drugs are available for effective treatment of VC. Different conventional vaginal formulations (creams, gels, suppositories, powder, ointment, etc.) for VC are available today but have limited efficacy because of lesser residence time on vaginal epithelium due to self-cleansing action of vagina. So to overcome this problem, an extended and intimate contact with vaginal mucosa is desired; which can be accomplished by utilizing mucoadhesive polymers. Mucoadhesive polymers have an excellent binding capacity to mucosal tissues for considerable period of time. This unique property of these polymers significantly enhances retention time of different formulations on mucosal tissues. Currently, various novel formulations such as liposomes, nano- and microparticles, micro-emulsions, bio-adhesive gel and tablets are used to control and treat VC. In this review, we focused on current status of vaginal candidiasis, conventional and nanotechnology inspired formulation approaches.
Artificial Cells Nanomedicine and Biotechnology | 2015
Harmanpreet Singh; Rahul Sharma; Munish Joshi; Tarun Garg; Amit K. Goyal; Goutam Rath
Abstract The aim of the present study is to design a mucoadhesive nano-carrier system which retains at the site of application and maximizes the therapeutic potential of anticancer drug as well as reduces their systemic side effects. In the present study PVA nanofibers of Docetaxel were prepared using electrospinning machine. The resulting nanofibers were characterized through various parameters such as surface morphology, drug loading, in-vitro drug release, tensile strength, mucoadhesiveness, drug permeability, degree of swelling and anticancer activities against selective cell lines to establish their therapeutics potential. On the basis of various evaluation results, we may conclude that the current approach comprising polymeric nanofibers can be successfully used for local delivery of anticancer drug.
Drug Delivery | 2015
Tarun Garg; Goutam Rath; Amit K. Goyal
Abstract Skin is the largest organ of the human body and plays the most important role in protecting against pathogen and foreign matter. Three important modes such as topical, regional and transdermal are widely used for delivery of various dosage forms. Among these modes, the topical dosage forms are preferred because it provides local therapeutic activity when applied to the skin or mucous membranes. Additives or pharmaceutical excipients (non-drug component of dosage form) are used as inactive ingredients in dosage form or tools for structuring dosage forms. The main use of topical dosage form additives are controling the extent of absorption, maintaining the viscosity, improving the stability as well as organoleptic property and increasing the bulk of the formulation. The overall goal of this article is to provide the clinician with information related to the topical dosage form additives and their current major applications against various diseases.
Journal of Drug Targeting | 2014
Shilpa Chaudhary; Tarun Garg; R. S. R. Murthy; Goutam Rath; Amit K. Goyal
Abstract Lymphatic system is a key target in research field due to its distinctive makeup and huge contributing functions within the body. Intestinal lymphatic drug transport (chylomicron pathway) is intensely described in research field till date because it is considered to be the best for improving oral drug delivery by avoiding first pass metabolism. The lymphatic imaging techniques and potential therapeutic candidates are engaged for evaluating disease states and overcoming these conditions. The novel drug delivery systems such as self-microemulsifying drug delivery system, nanoparticles, liposomes, nano-lipid carriers, solid lipid carriers are employed for delivering drugs through lymphatic system via various routes such as subcutaneous route, intraperitoneal route, pulmonary route, gastric sub-mucosal injection, intrapleural and intradermal. Among these colloidal particles, lipid-based delivery system is considered to be the best for lymphatic delivery. From the last few decades, mesenteric lymph duct cannulation and thoracic lymph duct cannulation are followed to assess lymphatic uptake of drugs. Due to their limitations, chylomicrons inhibitors and in-vitro models are employed, i.e. lipolysis model and permeability model. Currently, research on this topic still continues and drainage system used to deliver the drugs against lymphatic disease as well as targeting other organs by modulating the chylomicron pathway.