Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Govindarajan T. Ramesh is active.

Publication


Featured researches published by Govindarajan T. Ramesh.


Journal of Nanoscience and Nanotechnology | 2007

Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ Foreskin cells.

Shubhashish Sarkar; Chidananda S. Sharma; Rajeshwari Yog; Adaikkappan Periakaruppan; Olufisayo Jejelowo; Renard L. Thomas; Enrique V. Barrera; Allison C. Rice-Ficht; Bobby L. Wilson; Govindarajan T. Ramesh

It is known that the mechanical properties of clay-reinforced nanocomposites are significantly affected by the dispersion of clay particles in the matrix. In this study, the effect of surface-treatment of Montmorillonite (MMT) on the fracture behavior of MMT/epoxy nanocomposite was investigated. For this purpose, fracture tests were performed using samples with three different clay concentration level. After fracture tests, SEM analysis was made on the fracture surfaces to examine the fracture mechanism. It was found that the MMT treatment using 3-aminopropyltriethoxysilane enhanced the fracture toughness increased of the MMT/epoxy nanocomposite. This is due to the improved intercalation effect and interfacial strength between MMT and epoxy matrix.


Journal of Biochemical and Molecular Toxicology | 2009

Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes

Prabakaran Ravichandran; Adaikkappan Periyakaruppan; Bindu Sadanandan; Vani Ramesh; Joseph C. Hall; Olufisayo Jejelowo; Govindarajan T. Ramesh

Carbon nanotubes (CNTs), the most promising material with unique characteristics, find its application in different fields ranging from composite materials to medicine and from electronics to energy storage. However, little is known about the mechanism behind the interaction of these particles with cells and their toxicity. So, here we investigated the adverse effects of multiwalled CNTs (MWCNTs) in rat lung epithelial (LE) cells. The results showed that the incubation of LE cells with 0.5–10 μg/mL of MWCNTs caused a dose‐ and time‐dependent increase in the formation of free radicals, the accumulation of peroxidative products, the loss of cell viability, and antioxidant depletion. The significant amount of incorporation of dUTPs in the nucleus after 24 h confirms the induction of apoptosis. It was also observed that there is an increase in the activity of both caspases‐3 and caspase‐8 in cells, with increases in time and the concentration of MWCNTs. No significant incorporation of dUTPs was observed in cells, incubated with z‐VAD‐fmk, which confirmed the role of caspases in DNA fragmentation. The present study reveals that MWCNTs induced oxidative stress and stimulated apoptosis signaling pathway through caspase activation in rat LE cell lines.


Clinical Cancer Research | 2007

Morin (3,5,7,2′,4′-Pentahydroxyflavone) Abolishes Nuclear Factor-κB Activation Induced by Various Carcinogens and Inflammatory Stimuli, Leading to Suppression of Nuclear Factor-κB–Regulated Gene Expression and Up-regulation of Apoptosis

Sunil K. Manna; Rishi S. Aggarwal; Gautam Sethi; Bharat B. Aggarwal; Govindarajan T. Ramesh

Purpose: Morin is a flavone that exhibits antiproliferative, antitumor, and anti-inflammatory effects through a mechanism that is not well understood. Because of the role of transcription factor nuclear factor-κB (NF-κB) in the control of cell survival, proliferation, tumorigenesis, and inflammation, we postulated that morin mediates its effects by modulating NF-κB activation. Experimental Design: We investigated the effect of morin on NF-κB pathway activated by inflammatory agents, carcinogens, and tumor promoters. The effect of this flavone on expression of NF-κB–regulated gene products involved in cell survival, proliferation, and invasion was also examined. Results: We showed by DNA-binding assay that NF-κB activation induced by tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate, lipopolysaccharide, ceramide, interleukin-1, and H2O2 was suppressed by morin; the suppression was not cell type specific. The suppression of NF-κB by morin was mediated through inhibition of IκBα (inhibitory subunit of NF-κB) kinase, leading to suppression of phosphorylation and degradation of IκBα and consequent p65 nuclear translocation. Morin also inhibited the NF-κB–dependent reporter gene expression activated by TNF, TNF receptor (TNFR) 1, TNFR1-associated death domain, TNFR-associated factor 2, NF-κB–inducing kinase, IκB kinase, and the p65 subunit of NF-κB. NF-κB–regulated gene products involved in cell survival [inhibitor of apoptosis (IAP) 1, IAP2, X chromosome-linked IAP, Bcl-xL, and survivin], proliferation (cyclin D1 and cyclooxygenase-2), and invasion (matrix metalloproteinase-9) were down-regulated by morin. These effects correlated with enhancement of apoptosis induced by TNF and chemotherapeutic agents. Conclusion: Overall, our results indicate that morin suppresses the activation of NF-κB and NF-κB–regulated gene expression, leading to enhancement of apoptosis. This may provide the molecular basis for the ability of morin to act as an anticancer and anti-inflammatory agent.


Apoptosis | 2010

Multiwalled carbon nanotubes activate NF-κB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells

Prabakaran Ravichandran; Sudhakar Baluchamy; Bindhu Sadanandan; Ramya Gopikrishnan; Santosh Biradar; Vani Ramesh; Joseph C. Hall; Govindarajan T. Ramesh

Our previous report on multiwall carbon nanotubes (MWCNT) has demonstrated the generation of reactive radicals and depletion of intracellular antioxidants which in turn cause cell death through activation of caspases. The molecular mechanism of cellular death due to MWCNT is not clear yet. In this study, we investigated the signaling pathways implicated in MWCNT-induced apoptosis in rat lung epithelial cells. First, we assessed the DNA damage in response to MWCNT treatment and showed the significant DNA damage as compared to control. The collapse of the mitochondrial membrane integrity, release of cytochrome c into the cytosol, reduction in cellular ATP content, increased levels of mitochondrial apoptogenic factor and activation and nuclear translocation of NF-κB were observed in MWCNT treated cells. In addition, a time-dependent induction of phosphorylated IκBα and its degradation were detected in cells exposed to MWCNT. Furthermore, MWCNT activated several death related proteins including apoptosis inducing factor, p53, p21 and bax. Together, our results suggest that signaling pathways such as NF-κB and AP-1 are activated upon MWCNT treatment for cellular cytotoxicity.


Nano-micro Letters | 2010

Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application

Ramya Gopikrishnan; Kai Zhang; Prabakaran Ravichandran; Sudhakar Baluchamy; Vani Ramesh; Santhoshkumar Biradar; P. Ramesh; J. Pradhan; Joseph C. Hall; A. K. Pradhan; Govindarajan T. Ramesh

Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here, we have synthesized zinc oxide (ZnO) nanorods using zinc acetate and hexamethylenetetramine as precursors followed by characterizing using X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The growth of synthesized zinc oxide nanorods was found to be very close to its hexagonal nature, which is confirmed by X-ray diffraction. The nanorod was grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of synthesized ZnO nanorods from the individual crystalline nucleus was confirmed by scanning and transmission electron microscopy. The length of the nanorod was estimated to be around 21 nm in diameter and 50 nm in length. Our toxicology studies showed that synthesized ZnO nanorods exposure on hela cells has no significant induction of oxidative stress or cell death even in higher concentration (10 μg/ml). The results suggest that ZnO nanorods might be a safer nanomaterial for biological applications.


Toxicology Letters | 2001

Lead exposure activates nuclear factor kappa b, activator protein-1, c-Jun N-terminal kinase and caspases in the rat brain

Govindarajan T. Ramesh; Sunil K. Manna; Bharat B. Aggarwal; Arun L. Jadhav

How lead manifests its neurotoxicity is not well understood. The hypothesis that lead may activate nuclear transcription factors NF-kappaB, activator protein-1 (AP-1), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase (MAPKK) and caspases in the rat brain leading to the manifestation of its neurotoxic effects, was tested in 21-day-old male Long-Evans rats exposed to 50 ppm Pb in drinking water for 90 days. After the 90-day exposure, blood lead levels of the rats in control group were 4+/-0.2 microg/dl, while those of the Pb-exposed group were 18+/-0.3 microg/dl (n=50). Similarly, at the end of the exposure period, the Pb-exposed group showed significantly higher accumulation of Pb in brain regions such as, frontal cortex (FC), brain stem (BS), striatum (ST), and hippocampus (HIP) (338.6+/-7.7, 391.6+/-3.8, 288.3+/-6.7, and 382.3+/-3.3 ng/g wet tissue, respectively, in FC, BS, ST, and HIP) than the control group (126.6+/-2.7, 127.6+/-1.8, 201.3+/-9.4, and 180.3+/-4.4 ng/g wet tissue, respectively, in FC, BS, ST, and HIP). There was a 3-4-fold increase in NF-kappaB and AP-1 level in all the four regions of the brain of lead-treated animals. All four regions showed 4-10-fold activation of JNK and a 5-6-fold activation of MAPKK. As indicated by poly(ADP ribose) polymerase cleavage, lead exposure induced the activation of caspases in all four regions. Overall our results indicate that lead exposure induces the activation of NF-kappaB, AP-1, JNK, MAPKK, and caspases in the brain, which may contribute to its neurotoxic effects.


Apoptosis | 2007

Cardiac glycoside induces cell death via FasL by activating calcineurin and NF-AT, but apoptosis initially proceeds through activation of caspases.

Pongali B. Raghavendra; Yashin Sreenivasan; Govindarajan T. Ramesh; Sunil K. Manna

Decrease in caspase activity is a common phenomenon in drug resistance. For effective therapeutic intervention, detection of such agents, which affects other pathway independent of caspases to promote cell death, might be important. Oleandrin, a polyphenolic glycoside induced cell death through activation of caspases in a variety of human tumour cells. In this report we provide evidence that besides caspases activation, oleandrin interacts with plasma membrane, changes fluidity of the membrane, disrupts Na+/K+-ATPase pump, enhances intracellular free Ca2+ and thereby activates calcineurin. Calcineurin, in turns, activates nuclear transcription factor NF-AT and its dependent genes such as FasL, which induces cell death as a late response of oleandrin. Cell death at early stages is mediated by caspases where inhibitors partially protected oleandrin-mediated cell death in vector-transfected cells, but almost completely in Bcl-xL-overexpressed cells. Overall, our data suggest that oleandrin might be important therapeutic molecule in case of tumors where cell death pathway occurs due to deregulation of caspase-mediated pathway


Journal of Biological Chemistry | 2011

Effects of Simulated Microgravity on Expression Profile of MicroRNA in Human Lymphoblastoid Cells

Lingegowda S. Mangala; Ye Zhang; Zhenhua He; Kamal Emami; Govindarajan T. Ramesh; Michael D. Story; Larry H. Rohde; Honglu Wu

This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.


Toxicology Letters | 2000

Contribution of protein kinase C and glutamate in Pb2+-induced cytotoxicity

Arun L. Jadhav; Govindarajan T. Ramesh; Palur G. Gunasekar

Activation of protein kinase C (PKC) plays an important role in lead (Pb(2+))-induced cytotoxicity. The effects of low dose exposure to Pb(2+) on cytosolic free calcium (Ca(2+)), PKC activity and mechanisms involved in cell death were studied in PC12 cells. Exposure of PC12 cells to low dose Pb(2+) (0.01 microM) increased PKC activity, while exposure to a higher dose (10 microM) led to decreased PKC activity. Additionally, in normal extracellular medium, low concentration of Pb(2+) (0.01 microM) stimulated increase in cytosolic free calcium while the higher concentrations of Pb(2+) (10 microM) did not. However, the effect of low dose Pb(2+) (0.01 microM) was blocked by removing Ca(2+) from external medium. The role of Pb(2+)-induced changes in PKC activity and its relationship to oxidative stress and related cytotoxicity was also studied. Pb(2+) alone (0.01-10 microM) produced reactive oxygen species (ROS) dose dependently over the period of 24 h. Pb(2+)-induced ROS were potentiated in the presence of 500 microM glutamate. Furthermore, a correlation was observed between ROS generation and the levels of cytotoxicity, which was observed after 24 h exposures to Pb(2+) by trypan blue method, and the cytotoxicity was enhanced by glutamate co-treatment. Pb(2+)-induced cell death was blocked partially by staurosporine (PKC inhibitor, 100 nM) and NMDA antagonist, MK-801 (1 microM). It is concluded that, in Pb-induced cytotoxicity, modulation of PKC and intracellular calcium play significant roles in augmenting glutamate receptor mediated oxidative species formation and subsequent cell death.


In Vitro Cellular & Developmental Biology – Animal | 2005

ACTIVATION OF NUCLEAR TRANSCRIPTION FACTOR–κB IN MOUSE BRAIN INDUCED BY A SIMULATED MICROGRAVITY ENVIRONMENT

Kimberly Wise; Sunil K. Manna; Keiko Yamauchi; Vani Ramesh; Bobby L. Wilson; Renard L. Thomas; Shubhashish Sarkar; Anil D. Kulkarni; Neil R. Pellis; Govindarajan T. Ramesh

SummaryMicrogravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

Collaboration


Dive into the Govindarajan T. Ramesh's collaboration.

Top Co-Authors

Avatar

Vani Ramesh

Norfolk State University

View shared research outputs
Top Co-Authors

Avatar

Joseph C. Hall

Norfolk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil K. Manna

Texas Southern University

View shared research outputs
Top Co-Authors

Avatar

Ye Zhang

University of Houston–Clear Lake

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bobby L. Wilson

Texas Southern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge