Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gozde Unal is active.

Publication


Featured researches published by Gozde Unal.


international conference on image processing | 2005

Graph cuts segmentation using an elliptical shape prior

Gregory G. Slabaugh; Gozde Unal

We present a graph cuts-based image segmentation technique that incorporates an elliptical shape prior. Inclusion of this shape constraint restricts the solution space of the segmentation result, increasing robustness to misleading information that results from noise, weak boundaries, and clutter. We argue that combining a shape prior with a graph cuts method suggests an iterative approach that updates an intermediate result to the desired solution. We first present the details of our method and then demonstrate its effectiveness in segmenting vessels and lymph nodes from pelvic magnetic resonance images, as well as human faces.


International Journal of Computer Vision | 2005

Information-Theoretic Active Polygons for Unsupervised Texture Segmentation

Gozde Unal; Anthony J. Yezzi; Hamid Krim

Curve evolution models used in image segmentation and based on image region information usually utilize simple statistics such as means and variances, hence can not account for higher order nature of the textural characteristics of image regions. In addition, the object delineation by active contour methods, results in a contour representation which still requires a substantial amount of data to be stored for subsequent multimedia applications such as visual information retrieval from databases. Polygonal approximations of the extracted continuous curves are required to reduce the amount of data since polygons are powerful approximators of shapes for use in later recognition stages such as shape matching and coding. The key contribution of this paper is the development of a new active contour model which nicely ties the desirable polygonal representation of an object directly to the image segmentation process. This model can robustly capture texture boundaries by way of higher-order statistics of the data and using an information-theoretic measure and with its nature of the ordinary differential equations. This new variational texture segmentation model, is unsupervised since no prior knowledge on the textural properties of image regions is used. Another contribution in this sequel is a new polygon regularizer algorithm which uses electrostatics principles. This is a global regularizer and is more consistent than a local polygon regularization in preserving local features such as corners.


IEEE Signal Processing Magazine | 2002

Unifying probabilistic and variational estimation

A.B. Hamza; Hamid Krim; Gozde Unal

A maximum a posteriori (MAP) estimator using a Markov or a maximum entropy random field model for a prior distribution may be viewed as a minimizer of a variational problem.Using notions from robust statistics, a variational filter referred to as a Huber gradient descent flow is proposed. It is a result of optimizing a Huber functional subject to some noise constraints and takes a hybrid form of a total variation diffusion for large gradient magnitudes and of a linear diffusion for small gradient magnitudes. Using the gained insight, and as a further extension, we propose an information-theoretic gradient descent flow which is a result of minimizing a functional that is a hybrid between a negentropy variational integral and a total variation. Illustrating examples demonstrate a much improved performance of the approach in the presence of Gaussian and heavy tailed noise. In this article, we present a variational approach to MAP estimation with a more qualitative and tutorial emphasis. The key idea behind this approach is to use geometric insight in helping construct regularizing functionals and avoiding a subjective choice of a prior in MAP estimation. Using tools from robust statistics and information theory, we show that we can extend this strategy and develop two gradient descent flows for image denoising with a demonstrated performance.


computer vision and pattern recognition | 2005

Coupled PDEs for non-rigid registration and segmentation

Gozde Unal; Gregory G. Slabaugh

In this paper we present coupled partial differential equations (PDEs) for the problem of joint segmentation and registration. The registration component of the method estimates a deformation field between boundaries of two structures. The desired coupling comes from two PDEs that estimate a common surface through segmentation and its non-rigid registration with a target image. The solutions of these two PDEs both decrease the total energy of the surface, and therefore aid each other in finding a locally optimal solution. Our technique differs from recently popular joint segmentation and registration algorithms, all of which assume a rigid transformation among shapes. We present both the theory and results that demonstrate the effectiveness of the approach.


computer vision and pattern recognition | 2004

A variational approach to problems in calibration of multiple cameras

Gozde Unal; Anthony J. Yezzi; Stefano Soatto; Gregory G. Slabaugh

This paper addresses the problem of calibrating camera parameters using variational methods. One problem addressed is the severe lens distortion in low-cost cameras. For many computer vision algorithms aiming at reconstructing reliable representations of 3D scenes, the camera distortion effects will lead to inaccurate 3D reconstructions and geometrical measurements if not accounted for. A second problem is the color calibration problem caused by variations in camera responses that result in different color measurements and affects the algorithms that depend on these measurements. We also address the extrinsic camera calibration that estimates relative poses and orientations of multiple cameras in the system and the intrinsic camera calibration that estimates focal lengths and the skew parameters of the cameras. To address these calibration problems, we present multiview stereo techniques based on variational methods that utilize partial and ordinary differential equations. Our approach can also be considered as a coordinated refinement of camera calibration parameters. To reduce computational complexity of such algorithms, we utilize prior knowledge on the calibration object, making a piecewise smooth surface assumption, and evolve the pose, orientation, and scale parameters of such a 3D model object without requiring a 2D feature extraction from camera views. We derive the evolution equations for the distortion coefficients, the color calibration parameters, the extrinsic and intrinsic parameters of the cameras, and present experimental results.


computer vision and pattern recognition | 2006

Ultrasound-Specific Segmentation via Decorrelation and Statistical Region-Based Active Contours

Gregory G. Slabaugh; Gozde Unal; Tong Fang; Michael Wels

Segmentation of ultrasound images is often a very challenging task due to speckle noise that contaminates the image. It is well known that speckle noise exhibits an asymmetric distribution as well as significant spatial correlation. Since these attributes can be difficult to model, many previous ultrasound segmentation methods oversimplify the problem by assuming that the noise is white and/or Gaussian, resulting in generic approaches that are actually more suitable to MR and X-ray segmentation than ultrasound. Unlike these methods, in this paper we present an ultrasound-specific segmentation approach that first decorrelates the image, and then performs segmentation on the whitened result using statistical region-based active contours. In particular, we design a gradient ascent flow that evolves the active contours to maximize a log likelihood functional based on the Fisher-Tippett distribution. We present experimental results that demonstrate the effectiveness of our method.


international symposium on 3d data processing visualization and transmission | 2006

Anatomically-Aware, Automatic, and Fast Registration of 3D Ear Impression Models

Alexander Zouhar; Tong Fang; Gozde Unal; Gregory G. Slabaugh; Hui Xie; Fred McBagonluri

We present a registration framework based on feature points of anatomical, 3D shapes represented in the point cloud domain. Anatomical information is utilized throughout the complete registration process. The surfaces, which in this paper are ear impression models, are considered to be similar in the way that they possess the same anatomical regions but with varying geometry. First, in a shape analysis step, features of important anatomical regions (such as canal, aperture, and concha) are extracted automatically. Next these features are used in ordinary differential equations that update rigid registration parameters between two sets of feature points. For refinement of the results, the GCP algorithm is applied. Through our experiments, we demonstrate our techniques success in surface registration through registration of key anatomical regions of human ear impressions. Furthermore, we show that the proposed method achieves higher accuracy and faster performance than the standard GCP registration algorithm.


computer vision and pattern recognition | 2005

Active polyhedron: surface evolution theory applied to deformable meshes

Gregory G. Slabaugh; Gozde Unal

This paper presents a novel 3D deformable surface that we call an active polyhedron. Rooted in surface evolution theory, an active polyhedron is a polyhedral surface whose vertices deform to minimize a regional and/or boundary-based energy functional. Unlike continuous active surface models, the vertex motion of an active polyhedron is computed by integrating speed terms over polygonal faces of the surface. The resulting ordinary differential equations (ODEs) provide improved robustness to noise and allow for larger time steps compared to continuous active surfaces implemented with level set methods. We describe an electrostatic regularization technique that achieves global regularization while better preserving sharper local features. Experimental results demonstrate the effectiveness of an active polyhedron in solving segmentation problems as well as surface reconstruction from unorganized points.


IEEE Transactions on Image Processing | 2002

Stochastic differential equations and geometric flows

Gozde Unal; Hamid Krim; Anthony J. Yezzi

In previous years, curve evolution, applied to a single contour or to the level sets of an image via partial differential equations, has emerged as an important tool in image processing and computer vision. Curve evolution techniques have been utilized in problems such as image smoothing, segmentation, and shape analysis. We give a local stochastic interpretation of the basic curve smoothing equation, the so called geometric heat equation, and show that this evolution amounts to a tangential diffusion movement of the particles along the contour. Moreover, assuming that a priori information about the shapes of objects in an image is known, we present modifications of the geometric heat equation designed to preserve certain features in these shapes while removing noise. We also show how these new flows may be applied to smooth noisy curves without destroying their larger scale features, in contrast to the original geometric heat flow which tends to circularize any closed curve.


IEEE Transactions on Image Processing | 2005

Fast incorporation of optical flow into active polygons

Gozde Unal; Hamid Krim; Anthony J. Yezzi

In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.

Collaboration


Dive into the Gozde Unal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Yezzi

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamid Krim

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge