Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grace L. Chen is active.

Publication


Featured researches published by Grace L. Chen.


Vaccine | 2009

Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults

Ruth A. Karron; Kawsar R. Talaat; Catherine J. Luke; Karen Callahan; Bhagvanji Thumar; Susan DiLorenzo; Josephine M. McAuliffe; Elizabeth Schappell; Amorsolo L. Suguitan; Kimberly Mills; Grace L. Chen; Elaine W. Lamirande; Kathleen L. Coelingh; Hong Jin; Brian R. Murphy; George Kemble; Kanta Subbarao

BACKGROUND Development of live attenuated influenza vaccines (LAIV) against avian viruses with pandemic potential is an important public health strategy. METHODS AND FINDINGS We performed open-label trials to evaluate the safety, infectivity, and immunogenicity of H5N1 VN 2004 AA ca and H5N1 HK 2003 AA ca. Each of these vaccines contains a modified H5 hemagglutinin and unmodified N1 neuraminidase from the respective wild-type (wt) parent virus and the six internal protein gene segments of the A/Ann Arbor/6/60 cold-adapted (ca) master donor virus. The H5N1 VN 2004 AA ca vaccine virus was evaluated at dosages of 10(6.7) TCID(50) and 10(7.5) TCID(50), and the H5N1 HK 2003 AA ca vaccine was evaluated at a dosage of 10(7.5) TCID(50). Two doses were administered intranasally to healthy adults in isolation at 4-8 week intervals. Vaccine safety was assessed through daily examinations and infectivity was assessed by viral culture and by realtime reverse transcription-polymerase chain reaction testing of nasal wash (NW) specimens. Immunogenicity was assessed by measuring hemagglutination-inhibition (HI) antibodies, neutralizing antibodies, and IgG or IgA antibodies to recombinant (r)H5 VN 2004 hemagglutinin (HA) in serum or NW. Fifty-nine participants were enrolled: 21 received 10(6.7) TCID(50) and 21 received 10(7.5) TCID(50) of H5N1 VN 2004 AA ca and 17 received H5N1 HK 2003 AA ca. Shedding of vaccine virus was minimal, as were HI and neutralizing antibody responses. Fifty-two percent of recipients of 10(7.5) TCID(50) of H5N1 VN 2004 AA ca developed a serum IgA response to rH5 VN 2004 HA. CONCLUSIONS The live attenuated H5N1 VN 2004 and HK 2003 AA ca vaccines bearing avian H5 HA antigens were very restricted in replication and were more attenuated than seasonal LAIV bearing human H1, H3 or B HA antigens. The H5N1 AA ca LAIV elicited serum ELISA antibody but not HI or neutralizing antibody responses in healthy adults. (ClinicalTrials.gov Identifiers: NCT00347672 and NCT00488046).


Vaccine | 2009

A live attenuated H7N3 influenza virus vaccine is well tolerated and immunogenic in a Phase I trial in healthy adults.

Kawsar R. Talaat; Ruth A. Karron; Karen Callahan; Catherine J. Luke; Susan DiLorenzo; Grace L. Chen; Elaine W. Lamirande; Hong Jin; Kathy L. Coelingh; Brian R. Murphy; George Kemble; Kanta Subbarao

BACKGROUND Live attenuated influenza vaccines (LAIVs) are being developed and tested against a variety of influenza viruses with pandemic potential. We describe the results of an open-label Phase I trial of a live attenuated H7N3 virus vaccine. METHODS AND FINDINGS The H7N3 BC 2004/AA ca virus is a live attenuated, cold-adapted, temperature-sensitive influenza virus derived by reverse genetics from the wild-type low pathogenicity avian influenza virus A/chicken/British Columbia/CN-6/2004 (H7N3) and the A/AA/6/60 ca (H2N2) virus that is the Master Donor Virus of the live, intranasal seasonal influenza vaccine. We evaluated the safety, infectivity, and immunogenicity of two doses of 10(7.5)TCID(50) of the vaccine administered by nasal spray 5 weeks apart to normal healthy seronegative adult volunteers in an inpatient isolation unit. The subjects were followed for 2 months after one dose of vaccine or for 4 weeks after the second dose. Twenty-one subjects received the first dose of the vaccine, and 17 subjects received two doses. The vaccine was generally well tolerated. No serious adverse events occurred during the trial. The vaccine was highly restricted in replication: 6 (29%) subjects had virus recoverable by culture or by real-time reverse transcription polymerase chain reaction (rRT-PCR) after the first dose. Replication of vaccine virus was not detected following the second dose. Despite the restricted replication of the vaccine, 90% of the subjects developed an antibody response as measured by any assay: 62% by hemagglutination inhibition assay, 48% by microneutralization assay, 48% by ELISA for H7 HA-specific serum IgG or 71% by ELISA for H7 HA-specific serum IgA, after either one or two doses. Following the first dose, vaccine-specific IgG secreting cells as measured by ELISPOT increased from a mean of 0.1 to 41.6/10(6) PBMCs; vaccine-specific IgA secreting cells increased from 2 to 16.4/10(6) PBMCs. The antibody secreting cell response after the second dose was less vigorous, which is consistent with the observed low replication of vaccine virus after the second dose and consequent lower antigenic stimulation. CONCLUSION The live attenuated H7N3 vaccine was generally well tolerated but was highly restricted in replication in healthy seronegative adults. Despite the restricted replication, the vaccine was immunogenic, with serum IgA being the most sensitive measure of immunogenicity. Further development of this vaccine is warranted (ClinicalTrials.gov Identifier: NCT00516035).


Proceedings of the National Academy of Sciences of the United States of America | 2011

Seasonal influenza infection and live vaccine prime for a response to the 2009 pandemic H1N1 vaccine.

Grace L. Chen; Yuk Fai Lau; Elaine W. Lamirande; Amber W. McCall; Kanta Subbarao

The robust immune response to a single dose of pandemic 2009 H1N1 vaccine suggests that a large segment of the population has been previously primed. We evaluated the effect of seasonal (s) H1N1 infection, s-trivalent inactivated vaccine (s-TIV), and trivalent s-live attenuated influenza vaccine (s-LAIV) before immunization with a pandemic live attenuated influenza vaccine (p-LAIV) in mice. We compared serum and mucosal antibody and pulmonary CD8 and CD4 responses and the virologic response to challenge with a wild-type 2009 pandemic H1N1 (p-H1N1) virus. Two doses of p-LAIV induced cellular immune and robust ELISA and neutralizing antibody responses that were associated with complete protection from p-H1N1 challenge. A single dose of p-LAIV induced a cellular response and ELISA but not a neutralizing antibody response, and incomplete protection from p-H1N1 virus challenge. Primary infection with s-H1N1 influenza virus followed by a dose of p-LAIV resulted in cross-reactive ELISA antibodies and a robust cellular immune response that was also associated with complete protection from p-H1N1 virus challenge. A lower-magnitude but similar response associated with partial protection was seen in mice that received a dose of s-LAIV followed by p-LAIV. Mice that received a dose of s-TIV followed by p-LAIV did not show any evidence of priming. In summary, prior infection with a seasonal influenza virus or s-LAIV primed mice for a robust response to a single dose of p-LAIV that was associated with protection equivalent to two doses of the matched pandemic vaccine.


Vaccine | 2011

An open label Phase I trial of a live attenuated H6N1 influenza virus vaccine in healthy adults.

Kawsar R. Talaat; Ruth A. Karron; Catherine J. Luke; Bhagvanji Thumar; Bridget A. McMahon; Grace L. Chen; Elaine W. Lamirande; Hong Jin; Kathy L. Coelingh; George Kemble; Kanta Subbarao

BACKGROUND We describe the results of an open label Phase I trial of a live attenuated H6N1 influenza virus vaccine (ClinicalTrials.gov Identifier: NCT00734175). METHODS AND FINDINGS We evaluated the safety, infectivity, and immunogenicity of two doses of 10(7) TCID(50) of the H6N1 Teal HK 97/AA ca vaccine, a cold-adapted and temperature sensitive live, attenuated influenza vaccine (LAIV) in healthy seronegative adults. Twenty-two participants received the first dose of the vaccine, and 18 received the second dose of vaccine 4 weeks later. The vaccine had a safety profile similar to that of other investigational LAIVs bearing avian hemagglutinin (HA) and neuraminidase (NA) genes. The vaccine was highly restricted in replication: two participants had virus detectable by rRT-PCR beyond day 1 after each dose. Antibody responses to the vaccine were also restricted: 43% of participants developed a serum antibody response as measured by any assay: 5% by hemagglutination-inhibition assay, 5% by microneutralization assay, 29% by ELISA for H6 HA-specific IgG and 24% by ELISA for H6 HA specific IgA after either 1 or 2 doses. Following the second dose, vaccine specific IgG and IgA secreting cells as measured by ELISPOT increased from a mean of 0.6 to 9.2/10(6) PBMCs and from 0.2 to 2.2/10(6) PBMCs, respectively. CONCLUSION The H6N1 LAIV had a safety profile similar to that of LAIV bearing other HA and NA genes, but was highly restricted in replication in healthy seronegative adults. The H6N1 LAIV was also not as immunogenic as the seasonal LAIV.


Influenza and Other Respiratory Viruses | 2013

An open‐label phase I trial of a live attenuated H2N2 influenza virus vaccine in healthy adults

Kawsar R. Talaat; Ruth A. Karron; Philana H. Liang; Bridget A. McMahon; Catherine J. Luke; Bhagvanji Thumar; Grace L. Chen; Ji Young Min; Elaine W. Lamirande; Hong Jin; Kathy L. Coelingh; George Kemble; Kanta Subbarao

Please cite this paper as: Talaat et al. (2012) An open‐label phase I trial of a live attenuated H2N2 influenza virus vaccine in healthy adults. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00350.x.


The Lancet | 2017

Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials

Martin R. Gaudinski; Katherine V. Houser; Kaitlyn M. Morabito; Zonghui Hu; Galina Yamshchikov; Ro Shauna Rothwell; Nina M. Berkowitz; Floreliz Mendoza; Jamie G. Saunders; Laura Novik; Cynthia S. Hendel; LaSonji A. Holman; Ingelise J. Gordon; Josephine H. Cox; Srilatha Edupuganti; Monica A. McArthur; Nadine Rouphael; Kirsten E. Lyke; Ginny E. Cummings; Sandra Sitar; Robert T. Bailer; Bryant M. Foreman; Katherine Burgomaster; Rebecca S. Pelc; David N. Gordon; Christina R. DeMaso; Kimberly A. Dowd; Carolyn M. Laurencot; Richard M. Schwartz; John R. Mascola

Summary Background The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins. Methods We did two phase 1, randomised, open-label trials involving healthy adult volunteers. The VRC 319 trial, done in three centres, assessed plasmid VRC5288 (Zika virus and Japanese encephalitis virus chimera), and the VRC 320, done in one centre, assessed plasmid VRC5283 (wild-type Zika virus). Eligible participants were aged 18–35 years in VRC19 and 18–50 years in VRC 320. Participants were randomly assigned 1:1 by a computer-generated randomisation schedule prepared by the study statistician. All participants received intramuscular injection of 4 mg vaccine. In VRC 319 participants were assigned to receive vaccinations via needle and syringe at 0 and 8 weeks, 0 and 12 weeks, 0, 4, and 8 weeks, or 0, 4, and 20 weeks. In VRC 320 participants were assigned to receive vaccinations at 0, 4, and 8 weeks via single-dose needle and syringe injection in one deltoid or split-dose needle and syringe or needle-free injection with the Stratis device (Pharmajet, Golden, CO, USA) in each deltoid. Both trials followed up volunteers for 24 months for the primary endpoint of safety, assessed as local and systemic reactogenicity in the 7 days after each vaccination and all adverse events in the 28 days after each vaccination. The secondary endpoint in both trials was immunogenicity 4 weeks after last vaccination. These trials are registered with ClinicalTrials.gov, numbers NCT02840487 and NCT02996461. Findings VRC 319 enrolled 80 participants (20 in each group), and VRC 320 enrolled 45 participants (15 in each group). One participant in VRC 319 and two in VRC 320 withdrew after one dose of vaccine, but were included in the safety analyses. Both vaccines were safe and well tolerated. All local and systemic symptoms were mild to moderate. In both studies, pain and tenderness at the injection site was the most frequent local symptoms (37 [46%] of 80 participants in VRC 319 and 36 [80%] of 45 in VRC 320) and malaise and headache were the most frequent systemic symptoms (22 [27%] and 18 [22%], respectively, in VRC 319 and 17 [38%] and 15 [33%], respectively, in VRC 320). For VRC5283, 14 of 14 (100%) participants who received split-dose vaccinations by needle-free injection had detectable positive antibody responses, and the geometric mean titre of 304 was the highest across all groups in both trials. Interpretation VRC5283 was well tolerated and has advanced to phase 2 efficacy testing. Funding Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Virology | 2010

Safety, immunogencity, and efficacy of a cold-adapted A/Ann Arbor/6/60 (H2N2) vaccine in mice and ferrets.

Grace L. Chen; Elaine W. Lamirande; Hong Jin; George Kemble; Kanta Subbarao

We studied the attenuation, immunogenicity and efficacy of the cold-adapted A/Ann Arbor/6/60 (AA ca) (H2N2) virus in mice and ferrets to evaluate its use in the event of an H2 influenza pandemic. The AA ca virus was restricted in replication in the respiratory tract of mice and ferrets. In mice, 2 doses of vaccine elicited a >4-fold rise in hemagglutination-inhibition (HAI) titer and resulted in complete inhibition of viral replication following lethal homologous wild-type virus challenge. In ferrets, a single dose of the vaccine elicited a >4-fold rise in HAI titer and conferred complete protection against homologous wild-type virus challenge in the upper respiratory tract. In both mice and ferrets, the AA ca virus provided significant protection from challenge with heterologous H2 virus challenge in the respiratory tract. The AA ca vaccine is safe, immunogenic, and efficacious against homologous and heterologous challenge in mice and ferrets, supporting the evaluation of this vaccine in clinical trials.


Current Topics in Microbiology and Immunology | 2009

Live Attenuated Vaccines for Pandemic Influenza

Grace L. Chen; Kanta Subbarao

In this chapter, we will review the development of and clinical experience with the currently licensed seasonal live attenuated influenza vaccines (LAIV) and preclinical studies of H5, H7, and H9 live attenuated pandemic influenza vaccine candidates. Vectored vaccine approaches will not be reviewed in this chapter. Experience with seasonal influenza vaccination has demonstrated the safety and efficacy of LAIV in both children and adults; moreover, cross-protection among antigenically distinct viruses within the same subtype may be induced by LAIV. While clinical studies and further characterization of the immunologic response to avian influenza viruses are still needed, the experience with seasonal LAIV underscores the potential of live attenuated vaccines to play an important role in the event of a pandemic.


Virology | 2010

Classical swine H1N1 influenza viruses confer cross protection from swine-origin 2009 pandemic H1N1 influenza virus infection in mice and ferrets.

Ji-Young Min; Grace L. Chen; Celia Santos; Elaine W. Lamirande; Yumiko Matsuoka; Kanta Subbarao

The hemagglutinin of the 2009 pandemic H1N1 influenza virus is a derivative of and is antigenically related to classical swine but not to seasonal human H1N1 viruses. We compared the A/California/7/2009 (CA/7/09) virus recommended by the WHO as the reference virus for vaccine development, with two classical swine influenza viruses A/swine/Iowa/31 (sw/IA/31) and A/New Jersey/8/1976 (NJ/76) to establish the extent of immunologic cross-reactivity and cross-protection in animal models. Primary infection with 2009 pandemic or NJ/76 viruses elicited antibodies against the CA/7/09 virus and provided complete protection from challenge with this virus in ferrets; the response in mice was variable and conferred partial protection. Although ferrets infected with sw/IA/31 virus developed low titers of cross-neutralizing antibody, they were protected from pulmonary replication of the CA/7/09 virus. The data suggest that prior exposure to antigenically related H1N1 viruses of swine-origin provide some protective immunity against the 2009 pandemic H1N1 virus.


Journal of Virology | 2014

Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets

Grace L. Chen; Elaine W. Lamirande; Xing Cheng; Fernando Torres-Velez; Marlene Orandle; Hong Jin; George Kemble; Kanta Subbarao

ABSTRACT H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively). The vaccine candidates exhibited the in vitro phenotypes of temperature sensitivity and cold adaptation and were restricted in replication in the respiratory tract of ferrets. In mice and ferrets, the vaccines elicited neutralizing antibodies and conferred protection against homologous wild-type virus challenge. Of the three candidates, the sw/06 ca vaccine elicited cross-reactive antibodies and provided significant protection against the greatest number of heterologous viruses. These observations suggest that the sw/06 ca vaccine should be further evaluated in a clinical trial as an H2 pandemic influenza vaccine candidate. IMPORTANCE Influenza pandemics arise when novel influenza viruses are introduced into a population with little prior immunity to the new virus and often result in higher rates of illness and death than annual seasonal influenza epidemics. An influenza H2 subtype virus caused a pandemic in 1957, and H2 viruses circulated in humans till 1968. H2 influenza viruses continue to circulate in birds, and the development of an H2 influenza vaccine candidate is therefore considered a priority in preparing for future pandemics. However, we cannot predict whether a human H2 virus will reemerge or a novel avian H2 virus will emerge. We identified three viruses as suitable candidates for further evaluation as vaccines to protect against H2 influenza viruses and evaluated the immune responses and protection that these three vaccines provided in mice and ferrets.

Collaboration


Dive into the Grace L. Chen's collaboration.

Top Co-Authors

Avatar

Kanta Subbarao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elaine W. Lamirande

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth A. Karron

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Catherine J. Luke

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert T. Bailer

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge