Gracia Mendoza
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gracia Mendoza.
Materials | 2015
Vanesa Andreu; Gracia Mendoza; Manuel Arruebo; Silvia Irusta
A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management.
ACS Applied Materials & Interfaces | 2016
Isabel Ortiz de Solorzano; Martin Prieto; Gracia Mendoza; Teresa Alejo; Silvia Irusta; Victor Sebastian; Manuel Arruebo
The continuous synthesis of biodegradable photothermal copper sulfide nanoparticles has been carried out with the aid of a microfluidic platform. A comparative physicochemical characterization of the resulting products from the microreactor and from a conventional batch reactor has been performed. The microreactor is able to operate in a continuous manner and with a 4-fold reduction in the synthesis times compared to that of the conventional batch reactor producing nanoparticles with the same physicochemical requirements. Biodegradation subproducts obtained under simulated physiological conditions have been identified, and a complete cytotoxicological analysis on different cell lines was performed. The photothermal effect of those nanomaterials has been demonstrated in vitro as well as their ability to generate reactive oxygen species.
ACS Applied Materials & Interfaces | 2017
Gracia Mendoza; Anna Regiel-Futyra; Vanesa Andreu; Victor Sebastian; Agnieszka Kyzioł; Grażyna Stochel; Manuel Arruebo
The ability of pathogenic bacteria to develop resistance mechanisms to avoid the antimicrobial potential of antibiotics has become an increasing problem for the healthcare system. The search for more effective and selective antimicrobial materials, though not harmful to mammalian cells, seems imperative. Herein we propose the use of gold-chitosan nanocomposites as effective bactericidal materials avoiding damage to human cells. Nanocomposites were obtained by taking advantage of the reductive and stabilizing action of chitosan solutions on two different gold precursor concentrations. The resulting nanocomposites were added at different final concentrations to a coculture model formed by Gram-positive (Staphylococcus aureus) or Gram-negative (Escherichia coli) bacteria and human macrophages. Gold-chitosan colloids exhibited superior bactericidal ability against both bacterial models without showing cytotoxicity on human cells at the concentrations tested. Morphological and in vitro viability studies supported the feasibility of the infection model here described to test novel bactericidal nanomaterials. Flow cytometry and scanning electron microscopy analyses pointed to the disruption of the bacterial wall as the lethal mechanism. Data obtained in the present study suggest that gold-chitosan nanocomposites are powerful and promising nanomaterials for reducing bacteria-associated infections, respecting the integrity of mammalian cells, and displaying high selectivity against the studied bacteria.
International Journal of Pharmaceutics | 2017
Javier Aragón; Nuria Navascues; Gracia Mendoza; Silvia Irusta
Core-shell polycaprolactone/polycaprolactone (PCL/PCL) and polycaprolactone/polyvinyl acetate (PCL/PVAc) electrospun fibers loaded with synthesized nanohydroxyapatite (HAn) were lased treated to create microporosity. The prepared materials were characterized by XRD, FTIR, TEM and SEM. Uniform and randomly oriented beadless fibrous structures were obtained in all cases. Fibers diameters were in the 150-300nm range. Needle-like HAn nanoparticles with mean diameters of 20nm and length of approximately 150nm were mostly encase inside the fibers. Laser treated materials present micropores with diameters in the range 70-120μm for PCL-HAn/PCL fibers and in the 50-90μm range for PCL-HAn/PVAC material. Only samples containing HAn presented bioactivity after incubation during 30days in simulated body fluid. All scaffolds presented high viability, very low mortality, and human osteoblast proliferation. Biocompatibility was increased by laser treatment due to the surface and porosity modification.
RSC Advances | 2016
Laura Español; Ane Larrea; Vanesa Andreu; Gracia Mendoza; Manuel Arruebo; Victor Sebastian; María Segunda Aurora-Prado; Erika Rosa Maria Kedor-Hackmann; Maria Inês Rocha Miritello Santoro; Jesus Santamaria
Dual drug encapsulation in biodegradable nanoparticles is always challenging and often requires strenuous optimization of the synthesis–encapsulation processes. This becomes even more difficult when the simultaneous encapsulation of molecules of different polarity is sought. Here we present a modified emulsification–evaporation process to produce polymeric nanoparticles (NPs) made of the biocompatible and biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) and co-encapsulating simultaneously two different drugs, the hydrophobic dexamethasone (DX) and the hydrophilic diclofenac sodium (DS). Three independent processing parameters were systematically modified to promote the incorporation of the different-polarity drugs into PLGA and to control the particle size under 150 nm. The careful selection of the appropriate solvents (ethyl acetate and methanol) was a key requirement for the successful encapsulation of DX and DS. DS and DX release kinetics as well as cytotoxicity assays underlined the therapeutic potential of the dual encapsulation strategy.
Polymer Journal | 2018
Teresa Alejo; Martin Prieto; Hugo García-Juan; Vanesa Andreu; Gracia Mendoza; Victor Sebastian; Manuel Arruebo
AbstractPhotochemically controlled ATRP-like polymerization is successfully used to prepare a thermoresponsive copolymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and di(ethylene glycol) methyl ether methacrylate (MEO2MA). The photochemically controlled method described here provides good control over the polymer structure, architecture, and properties. This photopolymerization renders polymers with narrow molecular weight distributions (Mw/Mn = 1.3) and high monomer conversions (>90%) while using a very low iridium-based catalyst concentration (25 ppm). In addition, the reaction rate of this polymerization is fast, reaching 50% monomer conversion in less than 1 h of reaction. The lower critical solution temperature (LCST) of the prepared polymer was also adjusted to be in the range of physiological temperatures, undergoing a coil-to-globule transition at 43 °C. In addition, the resulting polymer showed no cytotoxicity on four mammalian cell lines at the highest concentration tested (0.4 mg/ml), which highlights its potential use in different biomedical applications.The thermoresponsive copolymer P(MEO2MA-co-OEGMA500) was successfully prepared using a novel photopolymerization procedure. The synthesis was carried out using a user-friendly method with a few ppm of a photoredox iridium-based catalyst. Monomer conversions higher than 50% were achieved in less than 1 h of synthesis showing a faster polymerization rate when compared to the traditional Cu-based ATRP synthesis. The photochemically controlled method here described provides true control over polymer structure, architecture, and properties. Furthermore, the polymer showed no toxicity on four mammalian cell lines at the highest concentration tested (0.4 mg/ml).
Journal of Colloid and Interface Science | 2018
Javier Aragón; Simona Salerno; Loredana De Bartolo; Silvia Irusta; Gracia Mendoza
HYPOTHESIS The development of novel scaffolds based on biocompatible polymers is of great interest in the field of bone repair for fabrication of biodegradable scaffolds that mimic the extracellular matrix and have osteoconductive and osteoinductive properties for enhanced bone regeneration. EXPERIMENTS Polycaprolactone (PCL) and polycaprolactone/polyvinyl acetate (PCL/PVAc) core-shell fibers were synthesised and decorated with poly(lactic-co-glycolic acid) [PLGA] particles loaded with bone morphogenetic protein 2 (BMP2) by simultaneous electrospinning and electrospraying. Hydroxyapatite nanorods (HAn) were loaded into the core of fibers. The obtained scaffolds were characterised by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The in vitro potential of these materials for bone regeneration was assessed in biodegradation assays, osteoblast viability assays, and analyses of expression of specific bone markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). FINDINGS PLGA particles were homogeneously distributed in the entire fibre mat. The growth factor load was 1.2-1.7 μg/g of the scaffold whereas the HAn load was in the 8.8-12.6 wt% range. These scaffolds were able to support and enhance cell growth and proliferation facilitating the expression of osteogenic and osteoconductive markers (OCN and OPN). These observations underline the great importance of the presence of BMP2 in scaffolds for bone remodelling as well as the good potential of the newly developed scaffolds for clinical use in tissue engineering.
Journal of Biomedical Materials Research Part B | 2018
M. Gimeno; P. Pinczowski; Gracia Mendoza; J. Asín; Francisco José Vázquez; Eugenio Vispe; Felícito García‐Álvarez; M. Pérez; Jesus Santamaria; Manuel Arruebo; Lluís Luján
Infection of orthopedic devices is a major complication in the postsurgical period generating important health issues and economic consequences. Prevention strategies could be based on local release of antibiotics from the orthopedic device itself to avoid adhesion and growth of bacteria. The purpose of this work is to demonstrate the efficiency to prevent these infections by a cefazolin-eluting, perforated stainless steel implant in an in vivo ovine model. The device was placed in the tibia of sheep, one group receiving cefazolin-loaded implants whereas the control group received empty implants. All implants were experimentally infected by direct inoculation of Staphylococcus aureus ATCC 6538. In vitro cytotoxicological studies were also performed to check the effect of antibiotic on cell viability, integrity, and cycle. Results showed that sheep receiving cefazolin-loaded devices were able to avoid implant-associated infections, with normal tissue healing process. The antibiotic release followed a local concentric pattern as demonstrated by high-performance liquid chromatography detection in tissues. The in vitro results indicate the lack of relevant cytotoxic effects for the maximum antibiotic concentration released by the device. These results demonstrate the efficiency and safety of cefazolin-eluting implants in an ovine model to prevent early postsurgical infections of orthopedic devices.
Journal of Biomaterials Applications | 2018
Gracia Mendoza; Anna Regiel-Futyra; Alejandra Tamayo; Marta Monzón; Silvia Irusta; Miguel Ángel de Gregorio; Agnieszka Kyzioł; Manuel Arruebo
Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.
ACS Applied Materials & Interfaces | 2018
Sara Garcia-Salinas; Erico Himawan; Gracia Mendoza; Manuel Arruebo; Victor Sebastian
The large-scale continuous production of niosomes remains challenging. The inherent drawbacks of batch processes such as large particle polydispersity and reduced batch-to-batch reproducibility are here overcome by using commercially available microfluidic reactors. Compared to the traditional batch-based film hydration method, herein, we demonstrate that it is possible to carry out the homogeneous, large-scale (up to 120 mg/min) production of niosomes using two different synthesis techniques (the thin film hydration method and the emulsification technique). Niosomes particle size can be controlled depending on the need by varying the synthesis temperature. The high cytocompatibility of the resulting niosomes was also demonstrated in this work on three different somatic cell lines. For the first time, the structure of the niosome multilamellar shell was also elucidated using high-resolution transmission electron microscopy (HR-STEM) as well as their colloidal stability over time (6 weeks) under different storage conditions. The morphology of cryo-protected or as-made niosomes was also evaluated by HR-STEM after freeze-drying. Finally, the dual ability of those synthetic, nonionic, surfactant-based vesicles to carry both hydrophilic and hydrophobic molecules was also here demonstrated by using laser scanning confocal microscopy.