Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graciela Spivak is active.

Publication


Featured researches published by Graciela Spivak.


Nature Reviews Molecular Cell Biology | 2008

Transcription-coupled DNA repair: two decades of progress and surprises

Philip C. Hanawalt; Graciela Spivak

Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage

Tiziana Nardo; Roberta Oneda; Graciela Spivak; Bruno Vaz; Laurent Mortier; Pierre Thomas; Donata Orioli; Vincent Laugel; Anne Stary; Philip C. Hanawalt; Alain Sarasin; Miria Stefanini

UV-sensitive syndrome (UVSS) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UVSS is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UVSS patient (UVSS1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UVSS1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UVsS patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.


DNA Repair | 2015

Nucleotide excision repair in humans.

Graciela Spivak

The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.


Nucleic Acids Research | 2013

Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells

Jia Guo; Philip C. Hanawalt; Graciela Spivak

Oxidized bases in DNA have been implicated in cancer, aging and neurodegenerative disease. We have developed an approach combining single-cell gel electrophoresis (comet) with fluorescence in situ hybridization (FISH) that enables the comparative quantification of low, physiologically relevant levels of DNA lesions in the respective strands of defined nucleotide sequences and in the genome overall. We have synthesized single-stranded probes targeting the termini of DNA segments of interest using a polymerase chain reaction-based method. These probes facilitate detection of damage at the single-molecule level, as the lesions are converted to DNA strand breaks by lesion-specific endonucleases or glycosylases. To validate our method, we have documented transcription-coupled repair of cyclobutane pyrimidine dimers in the ataxia telangiectasia-mutated (ATM) gene in human fibroblasts irradiated with 254 nm ultraviolet at 0.1 J/m2, a dose ∼100-fold lower than those typically used. The high specificity and sensitivity of our approach revealed that 7,8-dihydro-8-oxoguanine (8-oxoG) at an incidence of approximately three lesions per megabase is preferentially repaired in the transcribed strand of the ATM gene. We have also demonstrated that the hOGG1, XPA, CSB and UVSSA proteins, as well as actively elongating RNA polymerase II, are required for this process, suggesting cross-talk between DNA repair pathways.


DNA Repair | 2002

Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers

Graciela Spivak; Toshiki Itoh; Tsukasa Matsunaga; Osamu Nikaido; Philip C. Hanawalt; Masaru Yamaizumi

Patients with ultraviolet-sensitive syndrome (UV(S)S) are sensitive to sunlight, but present neither developmental nor neurological deficiencies. Complementation studies with hereditary DNA repair syndromes show that UV(S)S is distinct from all known xeroderma pigmentosum (XP) and Cockayne syndrome (CS) groups. UV(S)S cells exhibit some characteristics typical of CS, including normal global genomic (GGR) repair of UV-photoproducts, poor clonal survival and defective recovery of RNA synthesis after UV exposure. Those observations have led us to suggest that UV(S)S cells, like those from CS, are defective in transcription-coupled repair (TCR) of cyclobutane pyrimidine dimers (CPD). We have now examined the repair of CPD in the transcribed and non-transcribed strands of the active dihydrofolate reductase (DHFR) and p53 genes, and of the silent alpha-fetoprotein (AFP) and mid-size neurofilament (NF-M) genes in normal human cells and in cells belonging to UV(S)S and CS complementation group B. Our results provide compelling evidence that the UV(S)S gene is essential for TCR of CPD and probably other bulky DNA lesions. As a possible distinction between UV(S)S and CS patients, we postulate that the UV(S)S gene may not be required for TCR of oxidative lesions. We have also found that repair of CPD in either DNA strand of the genomic fragments examined, occurs at a slower rate in TCR-deficient cells than in the non-transcribed strands in normal cells; we suggest that in the absence of TCR, global repair complexes have hindered access to lesions in genomic regions that extend beyond individual transcription units.


Biology of Reproduction | 2005

Nucleotide Excision Repair Activity Varies Among Murine Spermatogenic Cell Types

Guogang Xu; Graciela Spivak; David L. Mitchell; Toshi Mori; John R. McCarrey; C. Alex McMahan; Ronald B. Walter; Philip C. Hanawalt; Christi A. Walter

Abstract Germ cells perform a unique and critical biological function: they propagate the DNA that will be used to direct development of the next generation. Genetic integrity of germ cell DNA is essential for producing healthy and reproductively fit offspring, and yet germ cell DNA is damaged by endogenous and exogenous agents. Nucleotide excision repair (NER) is an important mechanism for coping with a variety of DNA lesions. Little is known about NER activity in spermatogenic cells. We expected that germ cells would be more efficient at DNA repair than somatic cells, and that this efficiency may be reduced with age when the prevalence of spontaneous mutations increases. In the present study, NER was measured in defined spermatogenic cell types, including premeiotic cells (A and B type spermatogonia), meiotic cells (pachytene spermatocytes), and postmeiotic haploid cells (round spermatids) and compared with NER in keratinocytes. Global genome repair and transcription-coupled repair subpathways of NER were examined. All spermatogenic cell types from young mice displayed good repair of (6-4) pyrimidone photoproducts, although the repair rate was slower than in primary keratinocytes. In aged mice, repair of 6-4 pyrimidone photoproducts was depressed in postmeiotic cells. While repair of cyclobutane pyrimidine dimers was not detected in spermatogenic cells or in keratinocytes, the transcribed strands of active genes were repaired with greater efficiency than nontranscribed strands or inactive genes in keratinocytes and in meiotic and postmeiotic cells; spermatogonia displayed low to moderate ability to repair cyclobutane pyrimidine dimers on both DNA strands regardless of transcriptional status. Overall, the data suggest cell type-specific NER activity during murine spermatogenesis, and our results have possible implications for germ cell aging.


Molecular and Cellular Biology | 1984

Enhanced transformation of human cells by UV-irradiated pSV2 plasmids.

Graciela Spivak; Ann K. Ganesan; Philip C. Hanawalt

Irradiating the plasmid pSV2-gpt with UV (254 nm) doses up to 200 J m-2 caused a dose-dependent increase in the yield of Gpt+ transformants when the plasmid was introduced into human cells by calcium phosphate coprecipitation. UV doses greater than 1 kJ m-2 were required to reduce the efficiency of transformation below that obtained with unirradiated DNA.


Progress in Molecular Biology and Translational Science | 2012

Transcription-coupled DNA repair in prokaryotes.

Ann K. Ganesan; Graciela Spivak; Philip C. Hanawalt

Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd.


DNA Repair | 2014

The complex choreography of transcription-coupled repair.

Graciela Spivak; Ann K. Ganesan

A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.


Mutation Research\/dna Repair Reports | 1988

Enhanced transforming activity of pSV2 plasmids in human cells depends upon the type of damage introduced into the plasmid

Graciela Spivak; Steven A. Leadon; Jean-Michel H. Vos; Stephanie Meade; Philip C. Hanawalt; Ann K. Ganesan

When pSV2-gpt or pSV2-neo plasmids are introduced into human cells by calcium phosphate coprecipitation, the yield of stable transformants (Gpt+ or Neo+) is increased by irradiating the respective plasmid DNA in vitro with UV (254 nm). To identify specific lesions that can increase the transforming activity of plasmids in human cells we examined pSV2 plasmids containing different types of damage. Of the lesions tested, cyclobutane pyrimidine dimers produced the greatest increase, and can nearly fully account for the effect of 254 nm UV on transformation. The enhancement of transformation produced by UV was not altered by the additional treatment of the plasmid DNA with T4 endonuclease V, an enzyme that nicks DNA specifically at pyrimidine dimers. Treatment of plasmid DNA with osmium tetroxide to produce thymine glycols, or with acid and heat to produce apurinic sites did not affect transformation frequency. The enhancement occurred in all the human cell lines tested, whether they contained or not sequences homologous to those in the plasmids, and was independent of the repair capacity of the recipient cells.

Collaboration


Dive into the Graciela Spivak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Tanasova

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Ofelia A. Olivero

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge