Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graciliana Lopes is active.

Publication


Featured researches published by Graciliana Lopes.


PLOS ONE | 2012

Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions

Graciliana Lopes; Carla Sousa; Luís R. Silva; Eugénia Pinto; Paula B. Andrade; João Bernardo; Teresa Mouga; Patrícia Valentão

Bacterial and fungal infections and the emerging multidrug resistance are driving interest in fighting these microorganisms with natural products, which have generally been considered complementary to pharmacological therapies. Phlorotannins are polyphenols restricted to brown seaweeds, recognized for their biological capacity. This study represents the first research on the antibacterial, antifungal, anti-inflammatory and antioxidant activity of phlorotannins purified extracts, which were obtained from ten dominant brown seaweeds of the occidental Portuguese coast. Phlorotannins content was determined by the specific dimethoxybenzaldehyde (DMBA) method and a yield between 75 and 969 mg/Kg phloroglucinol units (dry matter) was obtained. Fucus spiralis ranked first, followed by three Cystoseira species. The anti-inflammatory potential of the purified extracts was assessed via inhibitory effect on nitric oxide (NO) production by lipopolysaccharide-stimulated RAW 264.7 macrophage cells, Cystoseira tamariscifolia being the one showing promising activity for the treatment of inflammation. NO scavenging ability was also addressed in cell free systems, F. spiralis being the species with highest capacity. The antimicrobial potential of the extracts was checked against five Gram-positive and four Gram-negative bacteria and three fungi strains, that commonly colonize skin and mucosa and are responsible for food contamination. The different extracts were more effective against Gram-positive bacteria, Staphylococcus epidermidis being the most susceptible species. Concerning antifungal activity, Trichophyton rubrum was the most sensitive species. Although the molecular mechanisms underlying these properties remain poorly understood, the results obtained turn phlorotannins purified extracts a novel and potent pharmacological alternative for the treatment of a wide range of microbial infections, which usually also present an inflammatory component. In addition to the biological properties demonstrated herein, phlorotannins extracts may also be preferred, in order to avoid side effects and allergic reactions commonly associated with synthetic drugs.


Food Chemistry | 2013

Valuable compounds in macroalgae extracts.

Paula B. Andrade; Mariana Barbosa; Rui Matos; Graciliana Lopes; Juliana Vinholes; Teresa Mouga; Patrícia Valentão

Bioactive compounds present in ethanolic extracts from 18 macroalgae of the Portuguese coast were analysed by gas chromatography-mass spectrometry (GC-MS), leading to the characterization of 14 compounds: proline, phloroglucinol, mannitol, 8 fatty acids and 3 sterols. A dose-dependent response against enzymes with biological significance (α-glucosidase, acetylcholinesterase and butyrylcholinesterase) and free radicals (DPPH, nitric oxide, superoxide and hydroxyl) was found, Phaeophyta being the most promising group. A PCA analysis was performed and allowed the establishment of a correlation between the algae chemical composition and the biological activity. Cystoseira tamariscifolia (Hudson) Papenfuss, Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus are among the most active species, which is in accordance with their higher contents in phloroglucinol, mannitol, oleic, arachidonic and eicosapentaenoic acids, and fucosterol. The results point to the potential interest of the use of Phaeophyta species as food additives, due to their potent antiradical activities, and especially highlights the importance of F. spiralis in the food chain of Mediterranean countries. Moreover, the incorporation of the extracts of these species in food products, nutraceutical and pharmaceutical preparations for human health should also be instigated, since they can suppress hyperglycemia and inhibit cholinesterases.


Marine Drugs | 2012

Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties

Federico Ferreres; Graciliana Lopes; Angel Gil-Izquierdo; Paula B. Andrade; Carla Sousa; Teresa Mouga; Patrícia Valentão

Purified phlorotannin extracts from four brown seaweeds (Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira tamariscifolia (Hudson) Papenfuss, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus), were characterized by HPLC-DAD-ESI-MSn. Fucophloroethol, fucodiphloroethol, fucotriphloroethol, 7-phloroeckol, phlorofucofuroeckol and bieckol/dieckol were identified. The antioxidant activity and the hyaluronidase (HAase) inhibitory capacity exhibited by the extracts were also assessed. A correlation between the extracts activity and their chemical composition was established. F. spiralis, the species presenting higher molecular weight phlorotannins, generally displayed the strongest lipid peroxidation inhibitory activity (IC50 = 2.32 mg/mL dry weight) and the strongest HAase inhibitory capacity (IC50 = 0.73 mg/mL dry weight). As for superoxide radical scavenging, C. nodicaulis was the most efficient species (IC50 = 0.93 mg/mL dry weight), followed by F. spiralis (IC50 = 1.30 mg/mL dry weight). These results show that purified phlorotannin extracts have potent capabilities for preventing and slowing down the skin aging process, which is mainly associated with free radical damage and with the reduction of hyaluronic acid concentration, characteristic of the process.


Journal of Agricultural and Food Chemistry | 2008

Multivariate analysis of Tronchuda Cabbage(Brassica oleracea L. var. costata DC) phenolics:influence of fertilizers

Carla Sousa; David M. Pereira; J.A. Pereira; Albino Bento; M. Angelo Rodrigues; Sonia Dopico-García; Patrícia Valentão; Graciliana Lopes; Federico Ferreres; Rosa M. Seabra; Paula B. Andrade

A field experiment was carried out to investigate the effect of fertilization level on the phenolic composition of tronchuda cabbage ( Brassica oleracea L. var. costata DC) external and internal leaves. Eight different plots were constituted: a control without fertilization, one with organic matter, and six experiments with conventional fertilizers (nitrogen, boron, and sulfur, two levels each). The phenolic compounds were analyzed by reversed-phase HPLC-DAD. External and internal leaves revealed distinct qualitative composition. In the internal leaves were found 15 phenolics (5 kaempferol and 10 cinnamic acid derivatives), whereas the external leaves presented 3- p-coumaroylquinic acid and 13 kaempferol derivatives. Principal component analysis (PCA) was applied to assess the relationships between phenolic compounds, agronomical practices, and harvesting time. Samples obtained with conventional practices were quite effectively separated from organic samples, for both types of leaves. In general, samples developed without any fertilization presented the highest phenolics amounts: external and internal leaves contained 1.4- and 4.6-fold more phenolic compounds than the ones that received conventional fertilizer, respectively, and the internal leaves presented 2.4 times more phenolics than the ones grown with organic amendment. Additionally, samples from organic production exhibited higher total phenolics content than those from conventional practices, collected at the same time. Samples harvested first were revealed to be distinct from the ones collected later. The results show that it is possible to grow tronchuda cabbage without excess fertilizers, with highest amounts of phenolics and reduced environment contamination.


PLOS ONE | 2013

Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor.

Graciliana Lopes; Eugénia Pinto; Paula B. Andrade; Patrícia Valentão

In the last few decades, fungal infections, particularly nosocomial, increased all around the world. This increment stimulated the search for new antifungal agents, especially those derived from nature. Among natural products, those from marine sources have gained prominence in the last years. Purified phlorotannins extracts from three brown seaweeds (Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus) were screened for their antifungal activity against human pathogenic yeast and filamentous fungi. The purified phlorotannins extracts from the studied seaweeds displayed fungistatic and fungicidal activity against yeast and dermatophytes, respectively, pointing to their interest as anti-dermatophyte agent. C. albicans ATCC 10231 was the most susceptible among yeast, while Epidermophyton floccosum and Trichophyton rubrum were the most susceptible among dermatophytes. Since the antifungal mechanism constitutes an important strategy for limiting the emergence of resistance to the commercially available agents, the mechanism of action of purified phlorotannins extracts was approached. C. nodicaulis and C. usneoides seem to act by affecting the ergosterol composition of the cell membrane of yeast and dermatophyte, respectively. F. spiralis influenced the dermatophyte cell wall composition by reducing the levels of chitin. Phlorotannins also seem to affect the respiratory chain function, as all of the studied species significantly increased the activity of mitochondrial dehydrogenases and increased the incorporation of rhodamine 123 by yeast cells. Phlorotannins from F. spiralis inhibited the dimorphic transition of Candida albicans, leading to the formation of pseudohyphae with diminished capacity to adhere to epithelial cells. This finding is associated with a decrease of C. albicans virulence and capacity to invade host cells and can be potentially interesting for combined antifungal therapy, namely for the control of invasive candidiasis.


Marine Drugs | 2014

Anti-Inflammatory Potential of Monogalactosyl Diacylglycerols and a Monoacylglycerol from the Edible Brown Seaweed Fucus spiralis Linnaeus

Graciliana Lopes; Georgios Daletos; Peter Proksch; Paula B. Andrade; Patrícia Valentão

A monoacylglycerol (1) and a 1:1 mixture of two monogalactosyl diacylglycerols (MGDGs) (2 and 3) were isolated from the brown seaweed Fucus spiralis Linnaeus. The structures were elucidated by spectroscopic means (NMR and MS) and by comparison with the literature. Compound 1 was composed of a glycerol moiety linked to oleic acid (C18:1 Ω9). Compounds 2 and 3 contained a glycerol moiety linked to a galactose unit and eicosapentaenoic acid (C20:5 Ω3) combined with octadecatetraenoic acid (C18:4 Ω3) or linolenic acid (C18:3 Ω3), respectively. The isolated compounds were tested for their cytotoxic and anti-inflammatory activity in RAW 264.7 macrophage cells. All of them inhibited NO production at non-cytotoxic concentrations. The fraction consisting of compounds 2 and 3, in a ratio of 1:1, was slightly more effective than compound 1 (IC50 of 60.06 and 65.70 µg/mL, respectively). To our knowledge, this is the first report of these compounds from F. spiralis and on their anti-inflammatory capacity.


Combinatorial Chemistry & High Throughput Screening | 2007

Screening of Antioxidant Compounds During Sprouting of Brassica oleracea L. var. costata DC

Carla Sousa; Graciliana Lopes; David M. Pereira; Marcos Taveira; Patrícia Valentão; Rosa M. Seabra; J.A. Pereira; Paula Baptista; Federico Ferreres; Paula B. Andrade

The changes in antioxidant compounds of Brassica oleracea L. var. costata DC seeds were monitored during the first twelve days of seedling development. Sprouts were screened at time intervals of two days for phenolic compounds and organic acids. The identified phenolic compounds included esters of sinapic acid with glucose, gentiobiose and kaempferol, as well as sinapoylcholine. The organic acids were oxalic, aconitic, citric, pyruvic, malic, shikimic, and fumaric acids. During germination, a depletion of phenolic compounds was observed, although no qualitative changes were seen. Among individual compounds, kaempferol, choline and glucose esters of sinapic acid showed a marked decrease between days two and six, whereas the changes in gentiobiose esters of sinapic acid were smaller. The total organic acids content increased rapidly during the first four days, with less significant variations thereafter. Malic acid, the major organic acid found in sprouts, greatly contributed to this result though oxalic, pyruvic, and fumaric acids also increased in the same manner. In contrast, aconitic, citric and shikimic acids showed decreases between days two and twelve of germination.


Molecules | 2016

Phlorotannins: Towards New Pharmacological Interventions for Diabetes Mellitus Type 2

Graciliana Lopes; Paula B. Andrade; Patrícia Valentão

Diabetes mellitus is a group of metabolic disorders characterized by hyperglycaemia, and predicted by the World Health Organization as the expected 7th leading cause of death in 2030. Diabetes mellitus type 2 (DMT2) comprises the majority of diabetic individuals around the world (90%–95%). Pathophysiologically, this disorder results from a deregulation of glucose homeostasis, worsened by overweight and by a sedentary lifestyle, culminating in life-threatening cardiovascular events. The currently available anti-diabetic drugs are not devoid of undesirable side effects, sometimes responsible for poor therapeutic compliance. This represents a challenge for contemporary medicine, and stimulates research focused on the development of safer and more efficient anti-diabetic therapies. Amongst the most promising sources of new bioactive molecules, seaweeds represent valuable, but still underexploited, biofactories for drug discovery and product development. In this review, the role of phlorotannins, a class of polyphenols exclusively produced by brown seaweeds, in the management of DMT2 will be discussed, focusing on various pharmacologically relevant mechanisms and targets, including pancreatic, hepatic and intestinal enzymes, glucose transport and metabolism, glucose-induced toxicity and β-cell cytoprotection, and considering numerous in vitro and in vivo surveys.


Methods of Molecular Biology | 2015

Screening of a Marine Algal Extract for Antifungal Activities

Graciliana Lopes; Paula B. Andrade; Patrícia Valentão

Over the past few years algal extracts have become increasingly interesting to the scientific community due to their promising biological properties. Phlorotannin extracts are particularly attractive partly due to their reported antifungal activity against several yeast and dermatophyte strains.The micromethod used for the evaluation of the minimum inhibitory concentration (MIC) and the minimum lethal concentration (MLC) represents an effective and solvent-saving procedure to evaluate the antifungal activity of algae extracts. Here we describe the micromethod for determining the MIC and the MLC of algal extracts by using the example of a purified phlorotannin extract of brown algae.


Mini-reviews in Medicinal Chemistry | 2014

Antimicrobial Activity and Mechanism of Action of New N-heteroaryl-1H- (benz)Imidazoles

Eugénia Pinto; Helena Neves; Karnjana Hrimpeng; Ana-Filipa Silva; Agathe Begouin; Graciliana Lopes; Maria João R.P. Queiroz

The antimicrobial activity of sixteen new N-heteroarylated 1H-(benz)imidazoles was evaluated against clinically relevant bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and fungi (Candida, Aspergillus and dermatophyte) species according to the Clinical and Laboratory Standards Institute guidelines. None of the tested compounds were active against Gram negative bacteria, but only against S. aureus, that was particularly susceptible to N-thianthrenyl- and N-dibenzothienyl imidazole derivatives. Most of the imidazole derivatives showed a broad spectrum of antifungal activity in all tested fungal strains, including fluconazole-resistant species, with a particularly low minimum inhibitory concentration (MIC) for dermatophytes. N-(dibenzofuran-4-yl)-1H-imidazole (1) and N-(dibenzothien-4-yl)-1H-imidazole (3) showed the highest antifungal potential, being most active against C. albicans. Some N-heteroarylated benzimidazoles showed low activity for fungi with the exception of 3-(1H-benzo[d]imidazol-1-yl)quinoline (14) which was selective against dermatophytes (MIC=4-16 µg/mL). The effect of the active compounds in the inhibition of the dimorphic transition, ergosterol biosynthesis and mitochondrial activity was evaluated in Candida albicans. Compounds 1 and 3 showed the capacity to inhibit the germ tube formation in C. albicans, reduced the ergosterol production and impaired the mitochondrial function. Compounds 1 and 3 showed antimicrobial activity and low cytotoxicity, being of interest for further investigation concerning specially the development of new antifungal agents.

Collaboration


Dive into the Graciliana Lopes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Ferreres

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.A. Pereira

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Teresa Mouga

Polytechnic Institute of Leiria

View shared research outputs
Researchain Logo
Decentralizing Knowledge