Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graeme B. Bolger is active.

Publication


Featured researches published by Graeme B. Bolger.


Journal of Biological Chemistry | 1999

The RACK1 Signaling Scaffold Protein Selectively Interacts with the cAMP-specific Phosphodiesterase PDE4D5 Isoform

Stephen J. Yarwood; Michael R. Steele; Grant Scotland; Miles D. Houslay; Graeme B. Bolger

The WD-repeat protein receptor for activated C-kinase (RACK1) was identified by its interaction with the cyclic AMP-specific phosphodiesterase (PDE4) isoform PDE4D5 in a yeast two-hybrid screen. The interaction was confirmed by co-immunoprecipitation of native RACK1 and PDE4D5 from COS7, HEK293, 3T3-F442A, and SK-N-SH cell lines. The interaction was unaffected by stimulation of the cells with the phorbol ester phorbol 2-myristate 3-acetate. PDE4D5 did not interact with two other WD-repeat proteins, β’-coatomer protein and Gsβ, in two-hybrid tests. RACK1 did not interact with other PDE4D isoforms or with known PDE4A, PDE4B, and PDE4C isoforms. PDE4D5 and RACK1 interacted with high affinity (K a approximately 7 pm) when they were expressed and purified from Escherichia coli, demonstrating that the interaction does not require intermediate proteins. The binding of the E. coli-expressed proteins did not alter the kinetics of cAMP hydrolysis by PDE4D5 but caused a 3–4-fold change in its sensitivity to inhibition by the PDE4 selective inhibitor rolipram. The subcellular distributions of RACK1 and PDE4D5 were extremely similar, with the major amount of both proteins (70%) in the high speed supernatant (S2) fraction. Analysis of constructs with specific deletions or single amino acid mutations in PDE4D5 demonstrated that a small cluster of amino acids in the unique amino-terminal region of PDE4D5 was necessary for its interaction with RACK1. We suggest that RACK1 may act as a scaffold protein to recruit PDE4D5 and other proteins into a signaling complex.


The Journal of Clinical Endocrinology and Metabolism | 2008

The Role of the Aryl Hydrocarbon Receptor-Interacting Protein Gene in Familial and Sporadic Pituitary Adenomas

Chrysanthia Leontiou; Maria Gueorguiev; Jacqueline van der Spuy; Richard Quinton; Francesca Lolli; Sevda Hassan; Harvinder S. Chahal; Susana Igreja; Suzanne Jordan; Janice Rowe; Marie Stolbrink; Helen Christian; Jessica A. Wray; David Bishop-Bailey; Daniel M. Berney; John Wass; Vera Popovic; Antônio Ribeiro-Oliveira; Mônica R. Gadelha; John P. Monson; Julian R. E. Davis; Richard N. Clayton; Katsuhiko Yoshimoto; Takeo Iwata; Akira Matsuno; Kuniki Eguchi; Mâdâlina Musat; Daniel Flanagan; Gordon Peters; Graeme B. Bolger

CONTEXT Mutations have been identified in the aryl hydrocarbon receptor-interacting protein (AIP) gene in familial isolated pituitary adenomas (FIPA). It is not clear, however, how this molecular chaperone is involved in tumorigenesis. OBJECTIVE AIP sequence changes and expression were studied in FIPA and sporadic adenomas. The function of normal and mutated AIP molecules was studied on cell proliferation and protein-protein interaction. Cellular and ultrastructural AIP localization was determined in pituitary cells. PATIENTS Twenty-six FIPA kindreds and 85 sporadic pituitary adenoma patients were included in the study. RESULTS Nine families harbored AIP mutations. Overexpression of wild-type AIP in TIG3 and HEK293 human fibroblast and GH3 pituitary cell lines dramatically reduced cell proliferation, whereas mutant AIP lost this ability. All the mutations led to a disruption of the protein-protein interaction between AIP and phosphodiesterase-4A5. In normal pituitary, AIP colocalizes exclusively with GH and prolactin, and it is found in association with the secretory vesicle, as shown by double-immunofluorescence and electron microscopy staining. In sporadic pituitary adenomas, however, AIP is expressed in all tumor types. In addition, whereas AIP is expressed in the secretory vesicle in GH-secreting tumors, similar to normal GH-secreting cells, in lactotroph, corticotroph, and nonfunctioning adenomas, it is localized to the cytoplasm and not in the secretory vesicles. CONCLUSIONS Our functional evaluation of AIP mutations is consistent with a tumor-suppressor role for AIP and its involvement in familial acromegaly. The abnormal expression and subcellular localization of AIP in sporadic pituitary adenomas indicate deranged regulation of this protein during tumorigenesis.


Journal of Biological Chemistry | 2003

Attenuation of the Activity of the cAMP-specific Phosphodiesterase PDE4A5 by Interaction with the Immunophilin XAP2

Graeme B. Bolger; Alexander H. Peden; Michael R. Steele; Carolynn MacKenzie; David G. McEwan; Derek A. Wallace; Elaine Huston; George S. Baillie; Miles D. Houslay

The cyclic AMP-specific phosphodiesterase (PDE4) isoform PDE4A5 interacted with the immunophilin XAP2 in a yeast two-hybrid assay. The interaction was confirmed in biochemical pull-down analyses. The interaction was specific, in that PDE4A5 did not interact with the closely related immunophilins AIPL1, FKBP51, or FKBP52. XAP2 also did not interact with other PDE4A isoforms or typical isoforms from the three other PDE4 subfamilies. Functionally, XAP2 reversibly inhibited the enzymatic activity of PDE4A5, increased the sensitivity of PDE4A5 to inhibition by the prototypical PDE4 inhibitor 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidinone (rolipram) and attenuated the ability of cAMP-dependent protein kinase to phosphorylate PDE4A5 in intact cells. XAP2 maximally inhibited PDE4A5 by ∼60%, with an IC50 of 120 nm, and reduced the IC50 for rolipram from 390 nm to 70–90 nm. Co-expression of XAP2 and PDE4A5 in COS7 cells showed that they could be co-immunoprecipitated and also reduced both the enzymatic activity of PDE4A5 and its IC50 for rolipram. Native XAP2 and PDE4A5 could be co-immunoprecipitated from the brain. The isolated COOH-terminal half of XAP2 (amino acids 170–330), containing its tetratricopeptide repeat domain, but not the isolated NH2-terminal half (amino acids 1–169), containing the immunophilin homology region, similarly reduced PDE4A5 activity and its IC50 for rolipram. Mutation of Arg271 to alanine, in the XAP2 tetratricopeptide repeat region, attenuated its ability to both interact with PDE4A5 in two-hybrid assays and to inhibit PDE4A5 activity. Either the deletion of a specific portion of the unique amino-terminal region or specific mutations in the regulatory UCR2 domain of PDE4A5 attenuated its ability be inhibited by XAP2. We suggest that XAP2 functionally interacts with PDE4A5 in cells.


Human Mutation | 2010

Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families

Susana Igreja; Harvinder S. Chahal; Peter King; Graeme B. Bolger; Umasuthan Srirangalingam; Leonardo Guasti; J. Paul Chapple; Giampaolo Trivellin; Maria Gueorguiev; Katie Guegan; Karen Stals; Bernard Khoo; Ajith Kumar; Sian Ellard; Ashley B. Grossman; Márta Korbonits

Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15–40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and β‐galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6±11.2 years) than AIP mutation‐negative patients (40.4±14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A‐pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two‐hybrid assay of protein–protein interaction of all missense variants showed variable disruption of AIP‐phosphodiesterase‐4A5 binding. In summary, exonic, promoter, splice‐site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants. Hum Mutat 31:1–11, 2010.


Journal of Biological Chemistry | 1996

The Human Cyclic AMP-specific Phosphodiesterase PDE-46 (HSPDE4A4B) Expressed in Transfected COS7 Cells Occurs as Both Particulate and Cytosolic Species That Exhibit Distinct Kinetics of Inhibition by the Antidepressant Rolipram

Elaine Huston; Linda Pooley; Pascale Julien; Grant Scotland; Ian McPhee; Michael Sullivan; Graeme B. Bolger; Miles D. Houslay

Transfection of COS7 cells with a plasmid encoding the human cyclic AMP-specific PDE4A phosphodiesterase PDE-46 (HSPDE4A4B) led to the expression of a rolipram-inhibited PDE4 activity, which contributed ∼96% of the total COS cell PDE activity. A fusion protein was generated which encompassed residues (788-886) at the extreme C terminus of PDE-46 and was used to generate an antiserum that detected PDE-46 in transfected COS7 cells. Immunoblotting studies identified PDE-46 as a ∼125-kDa species that was associated with both the soluble and particulate fractions. The relative Vmax of particulate PDE-46 was ∼56% that of cytosolic PDE-46. Particulate PDE-46 was not solubilized using Triton X-100 or high NaCl concentrations. Immunofluorescence analysis by laser scanning confocal microscopy showed that PDE-46 was located at discrete margins of the cell, indicative of association with membrane cortical regions. The human PDE4A species, h6.1 (HSPDE4A4C), which lacks the N-terminal extension of PDE-46, was found as an entirely soluble species when expressed in COS7 cells. h6.1 was shown to have an ∼11-fold higher Vmax relative to that of PDE-46. In dose-response studies rolipram inhibited particulate PDE-46 at much lower concentrations (IC50 = 0.195 μM) than those needed to inhibit the cytosolic enzyme (IC50 = 1.6 μM). The basis of this difference lay in the fact that rolipram served as a simple competitive inhibitor of the cytosol enzyme (Ki = 1.6 μM) but as a partial competitive inhibitor of the particulate enzyme (Ki = 0.037 μM; Ki′ = 2.3 μM). Particulate PDE-46 thus showed a ∼60-fold higher affinity for rolipram than cytosolic PDE-46.


Biochemical Journal | 2007

Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of β-arrestin using spot-immobilized peptide arrays

George S. Baillie; David R. Adams; Narinder Bhari; Thomas M. Houslay; Suryakiran Vadrevu; Dong Meng; Xiang Li; Allan J. Dunlop; Graeme Milligan; Graeme B. Bolger; Enno Klussmann; Miles D. Houslay

Beta2-ARs (beta2-adrenoceptors) become desensitized rapidly upon recruitment of cytosolic beta-arrestin. PDE4D5 (family 4 cAMP-specific phosphodiesterase, subfamily D, isoform 5) can be recruited in complex with beta-arrestin, whereupon it regulates PKA (cAMP-dependent protein kinase) phosphorylation of the beta2-AR. In the present study, we have used novel technology, employing a library of overlapping peptides (25-mers) immobilized on cellulose membranes that scan the entire sequence of beta-arrestin 2, to define the interaction sites on beta-arrestin 2 for binding of PDE4D5 and the cognate long isoform, PDE4D3. We have identified a binding site in the beta-arrestin 2 N-domain for the common PDE4D catalytic unit and two regions in the beta-arrestin 2 C-domain that confer specificity for PDE4D5 binding. Alanine-scanning peptide array analysis of the N-domain binding region identified severely reduced interaction with PDE4D5 upon R26A substitution, and reduced interaction upon either K18A or T20A substitution. Similar analysis of the beta-arrestin 2 C-domain identified Arg286 and Asp291, together with the Leu215-His220 region, as being important for binding PDE4D5, but not PDE4D3. Transfection with wild-type beta-arrestin 2 profoundly decreased isoprenaline-stimulated PKA phosphorylation of the beta2-AR in MEFs (mouse embryo fibroblasts) lacking both beta-arrestin 1 and beta-arrestin 2. This effect was negated using either the R26A or the R286A mutant form of beta-arrestin 2 or a mutant with substitution of an alanine cassette for Leu215-His220, which showed little or no PDE4D5 binding, but was still recruited to the beta2-AR upon isoprenaline challenge. These data show that the interaction of PDE4D5 with both the N- and C-domains of beta-arrestin 2 are essential for beta2-AR regulation.


Journal of Biological Chemistry | 1996

Alternative Splicing of cAMP-specific Phosphodiesterase mRNA Transcripts CHARACTERIZATION OF A NOVEL TISSUE-SPECIFIC ISOFORM, RNPDE4A8

Graeme B. Bolger; Ian McPhee; Miles D. Houslay

In order to characterize the structure and regulation of members of the cAMP-specific phosphodiesterase (PDE) family (Type IV PDEs; PDE4 family), we have cloned from the rat a cDNA, pRPDE39, encoding a novel member of this family, which we call RNPDE4A8. Sequencing of the pRPDE39 cDNA shows it to be encoded by the rat PDE4A gene, but to differ from two other PDE4A transcripts, RD1 (pRPDE8; RNPDE4A1) and pRPDE6 (RNPDE4A5), by the presence of a unique region at its 5′ end, consistent with alternative mRNA splicing. The pRPDE39 cDNA encodes a predicted protein of 763 amino acids, of which all but 21, located at the extreme amino terminus, are found in the pRPDE6 protein. Expression of pRPDE39 in COS cells produced a protein of 98 ± 1.4 kDa, as determined by immunoblotting with an antiserum specific to the carboxyl-terminal regions of all PDE4A proteins, compared to a predicted value of 87.5 kDa. RNase protection analysis detected pRPDE39 mRNA only in testis. Immunoblotting of testis extracts demonstrated two bands of 97 ± 2 and 87 ± 3 kDa, the larger of which co-migrated with the band seen in COS cells expressing pRPDE39. COS cell expressed pRPDE39 partitioned between a high speed pellet (particulate) fraction (15% of protein; 8% of activity) and a cytosolic fraction. The particulate fraction had a K for cAMP of 3.3 ± 0.6 μM, and the cytosolic fraction a K of 5.4 ± 2.8 μM. The V values for the pRPDE39 protein, relative to the RD1 protein, were 0.16 ± 0.06 and 0.29 ± 0.05 for the particulate and cytosolic forms, respectively. The pRPDE39-encoded PDE activity could not be removed from the particulate fraction by high salt concentrations, or by nonionic detergents. The pRPDE39-encoded enzyme was inhibited by rolipram at an IC of 0.5 ± 0.2 μM for the particulate form and 1.0 ± 0.2 μM for the cytosolic form, which are values typical of PDE4 family members. The highly tissue-specific distribution of the pRPDE39 mRNA suggests that the pRPDE39 protein functions to modulate a cAMP signaling pathway that is present largely, if not exclusively, in the testis.


FEBS Letters | 1999

The unique N‐terminal domain of the cAMP phosphodiesterase PDE4D4 allows for interaction with specific SH3 domains

M. Beard; Jonathan C. O'Connell; Graeme B. Bolger; Miles D. Houslay

Of the five PDE4D isoenzymes, only the PDE4D4 cAMP specific phosphodiesterase was able to bind to SH3 domains. Only PDE4D4 and PDE4A5, but not any other PDE4A, B, C and D isoforms expressed in rat brain, bound to src, lyn and fyn kinase SH3 domains. Purified PDE4D4 could bind to purified lyn SH3. PDE4D4 and PDE4A5 both exhibited selectivity for binding the SH3 domains of certain proteins. PDE4D4 did not bind to WW domains. We suggest that an important function of the unique N‐terminal region of PDE4D4 may be to allow for association with certain SH3 domain‐containing proteins.


European Journal of Neuroscience | 2005

Differential expression and regulation of the cAMP-selective phosphodiesterase type 4A splice variants in rat brain by chronic antidepressant administration

Carrol D'Sa; Amelia J. Eisch; Graeme B. Bolger; Ronald S. Duman

Chronic antidepressant treatment up‐regulates the cAMP cascade in limbic brain regions, suggesting that activation of this pathway contributes to the therapeutic efficacy of antidepressants. A role for cAMP signaling is supported by the finding that rolipram, a selective inhibitor of cAMP‐specific phosphodiesterases type 4 (PDE4), has antidepressant efficacy in behavioral models of depression and in clinical trials. To elucidate further the role of PDE4 isozymes, we characterized the expression and regulation of PDE4A splice variants (i.e. PDE4A1, PDE4A5, PDE4A8 and PDE4A10) in rat brain by chronic antidepressant treatment. Initial in situ hybridization studies (ISH) revealed high levels of PDE4A1 mRNA in medial septum, diagonal band, olfactory system, hippocampus and cerebellum. PDE4A5 mRNA expression was restricted to the olfactory nuclei, deep cortical layers, dentate and CA1 pyramidal layers. PDE4A10 mRNA was localized in the dentate gyrus and CA1 pyramidal layers. PDE4A8 mRNA was absent in rat brain. We determined the influence of chronic fluoxetine or electroconvulsive seizure (ECS) treatments on PDE4A splice variants expression in various brain regions. ISH analysis indicated that chronic fluoxetine or ECS treatments significantly increased PDE4A1, but not PDE4A5 or PDE4A10, mRNA levels in frontal and parietal cortices. ECS increased PDE4A5 levels in the anterior cingulate and frontoparietal cortices, CA1 and dentate gyrus, whereas chronic fluoxetine or ECS treatment increased PDE4A10 levels in the hippocampus. The differential up‐regulation of PDE4A splice variants suggests compensatory region‐specific responses to the antidepressant‐induced increase in cAMP signaling and suggests that these splice variants may be relevant as targets for antidepressant intervention.


American Journal of Respiratory Cell and Molecular Biology | 2014

Cystic Fibrosis Transmembrane Conductance Regulator Activation by Roflumilast Contributes to Therapeutic Benefit in Chronic Bronchitis

James A. Lambert; S. Vamsee Raju; Li Ping Tang; Carmel M. McNicholas; Yao Li; Clifford Courville; Roopan F. Farris; George E. Coricor; Lisa Smoot; Marina Mazur; Mark T. Dransfield; Graeme B. Bolger; Steven M. Rowe

Cigarette smoking causes acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction and is associated with delayed mucociliary clearance and chronic bronchitis. Roflumilast is a clinically approved phosphodiesterase 4 inhibitor that improves lung function in patients with chronic bronchitis. We hypothesized that its therapeutic benefit was related in part to activation of CFTR. Primary human bronchial epithelial (HBE) cells, Calu-3, and T84 monolayers were exposed to whole cigarette smoke (WCS) or air with or without roflumilast treatment. CFTR-dependent ion transport was measured in modified Ussing chambers. Airway surface liquid (ASL) was determined by confocal microscopy. Intestinal fluid secretion of ligated murine intestine was monitored ex vivo. Roflumilast activated CFTR-dependent anion transport in normal HBE cells with a half maximal effective concentration of 2.9 nM. Roflumilast partially restored CFTR activity in WCS-exposed HBE cells (5.3 ± 1.1 μA/cm(2) vs. 1.2 ± 0.2 μA/cm(2) [control]; P < 0.05) and was additive with ivacaftor, a specific CFTR potentiator approved for the treatment of CF. Roflumilast improved the depleted ASL depth of HBE monolayers exposed to WCS (9.0 ± 3.1 μm vs. 5.6 ± 2.0 μm [control]; P < 0.05), achieving 79% of that observed in air controls. CFTR activation by roflumilast also induced CFTR-dependent fluid secretion in murine intestine, increasing the wet:dry ratio and the diameter of ligated murine segments. Roflumilast activates CFTR-mediated anion transport in airway and intestinal epithelia via a cyclic adenosine monophosphate-dependent pathway and partially reverses the deleterious effects of WCS, resulting in augmented ASL depth. Roflumilast may benefit patients with chronic obstructive pulmonary disease with chronic bronchitis by activating CFTR, which may also underlie noninfectious diarrhea caused by roflumilast.

Collaboration


Dive into the Graeme B. Bolger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellis G. Levine

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eric Jonasch

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge