Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graeme M. Day is active.

Publication


Featured researches published by Graeme M. Day.


Acta Crystallographica Section B-structural Science | 2009

Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test

Graeme M. Day; Timothy G. Cooper; Aurora J. Cruz-Cabeza; Katarzyna E. Hejczyk; Herman L. Ammon; Stephan X. M. Boerrigter; Jeffrey S. Tan; Raffaele Guido Della Valle; Elisabetta Venuti; Jovan Jose; Shridhar R. Gadre; Gautam R. Desiraju; Tejender S. Thakur; Bouke P. van Eijck; Julio C. Facelli; Victor E. Bazterra; Marta B. Ferraro; D.W.M. Hofmann; Marcus A. Neumann; Frank J. J. Leusen; John Kendrick; Sarah L. Price; Alston J. Misquitta; Panagiotis G. Karamertzanis; Gareth W. A. Welch; Harold A. Scheraga; Yelena A. Arnautova; Martin U. Schmidt; Jacco van de Streek; Alexandra K. Wolf

We report on the organization and outcome of the fourth blind test of crystal structure prediction, an international collaborative project organized to evaluate the present state in computational methods of predicting the crystal structures of small organic molecules. There were 14 research groups which took part, using a variety of methods to generate and rank the most likely crystal structures for four target systems: three single-component crystal structures and a 1:1 cocrystal. Participants were challenged to predict the crystal structures of the four systems, given only their molecular diagrams, while the recently determined but as-yet unpublished crystal structures were withheld by an independent referee. Three predictions were allowed for each system. The results demonstrate a dramatic improvement in rates of success over previous blind tests; in total, there were 13 successful predictions and, for each of the four targets, at least two groups correctly predicted the observed crystal structure. The successes include one participating group who correctly predicted all four crystal structures as their first ranked choice, albeit at a considerable computational expense. The results reflect important improvements in modelling methods and suggest that, at least for the small and fairly rigid types of molecules included in this blind test, such calculations can be constructively applied to help understand crystallization and polymorphism of organic molecules.


Nature | 2011

Modular and predictable assembly of porous organic molecular crystals

James T. A. Jones; Tom Hasell; Xiaofeng Wu; John Bacsa; Kim E. Jelfs; Marc Schmidtmann; Samantha Y. Chong; Dave J. Adams; Abbie Trewin; Florian Schiffman; Furio Corà; Ben Slater; Alexander Steiner; Graeme M. Day; Andrew I. Cooper

Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for ‘one-pot’ chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules.


Acta Crystallographica Section B-structural Science | 2011

Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test

David A. Bardwell; Claire S. Adjiman; Yelena A. Arnautova; E. V. Bartashevich; Stephan X. M. Boerrigter; Doris E. Braun; Aurora J. Cruz-Cabeza; Graeme M. Day; Raffaele Guido Della Valle; Gautam R. Desiraju; Bouke P. van Eijck; Julio C. Facelli; Marta B. Ferraro; Damián A. Grillo; Matthew Habgood; D.W.M. Hofmann; Fridolin Hofmann; K. V. Jovan Jose; Panagiotis G. Karamertzanis; Andrei V. Kazantsev; John Kendrick; Liudmila N. Kuleshova; Frank J. J. Leusen; Andrey V. Maleev; Alston J. Misquitta; Sharmarke Mohamed; R. J. Needs; Marcus A. Neumann; Denis Nikylov; Anita M. Orendt

The results of the fifth blind test of crystal structure prediction, which show important success with more challenging large and flexible molecules, are presented and discussed.


Angewandte Chemie | 2011

A Cocrystal Strategy to Tune the Luminescent Properties of Stilbene-Type Organic Solid-State Materials†

Dongpeng Yan; Amit Delori; Gareth O. Lloyd; Tomislav Friščić; Graeme M. Day; William Jones; Jun Lu; Min Wei; David G. Evans; Xue Duan

The one- and two-photon luminescence of stilbene-type solid-state materials can be tuned and controlled from blue to yellow color by a supramolecular cocrystal method.


Journal of the American Chemical Society | 2010

Powder crystallography by combined crystal structure prediction and high-resolution 1H solid-state NMR spectroscopy.

Elodie Salager; Graeme M. Day; Robin S. Stein; Chris J. Pickard; Bénédicte Elena; Lyndon Emsley

A fast method for crystal structure determination using crystal structure prediction and solid-state (1)H NMR is presented. This technique does not need any prior knowledge except the chemical formula; resonance assignment is not necessary. Starting from an ensemble of predicted crystal structures for powdered thymol, comparison between experimental and calculated (1)H solid-state isotropic NMR chemical shifts is sufficient to determine which predicted structure corresponds to the powder under study. The same approach using proton-proton spin-diffusion data is successful and can be used for cross-validation.


Crystallography Reviews | 2011

Current approaches to predicting molecular organic crystal structures

Graeme M. Day

Considerable effort has been invested in developing methods for predicting the crystalline structure(s) of a given compound, ideally starting from no more than a structural formula of the molecule. Reliable computational predictions would be of great value in many areas of materials chemistry, from the design of materials with novel properties to the avoidance of an undesirable change of form in the late stages of development of an industrially important molecule. Methods used in crystal structure prediction are reviewed, with particular focus on the most common approach – global lattice energy minimization. Progress and current limitations are highlighted, with reference to examples from the literature and the results of blind tests organized to objectively monitor developments in the field.


Angewandte Chemie | 2011

On–Off Porosity Switching in a Molecular Organic Solid

James T. A. Jones; Daniel Holden; Tamoghna Mitra; Tom Hasell; Dave J. Adams; Kim E. Jelfs; Abbie Trewin; David J. Willock; Graeme M. Day; John Bacsa; Alexander Steiner; Andrew I. Cooper

Pulling the old switcheroo: Microporosity can be switched “on” and “off” in a crystalline molecular organic solid composed of cage molecules (see scheme). The switch is facilitated by conformational flexibility in the soft organic crystal state.


Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry | 2016

Report on the sixth blind test of organic crystal structure prediction methods

Anthony M. Reilly; Richard I. Cooper; Claire S. Adjiman; Saswata Bhattacharya; A. Daniel Boese; Jan Gerit Brandenburg; Peter J. Bygrave; Rita Bylsma; Josh E. Campbell; Roberto Car; David H. Case; Renu Chadha; Jason C. Cole; Katherine Cosburn; H. M. Cuppen; Farren Curtis; Graeme M. Day; Robert A. DiStasio; Alexander Dzyabchenko; Bouke P. van Eijck; Dennis M. Elking; Joost van den Ende; Julio C. Facelli; Marta B. Ferraro; Laszlo Fusti-Molnar; Christina Anna Gatsiou; Thomas S. Gee; René de Gelder; Luca M. Ghiringhelli; Hitoshi Goto

The results of the sixth blind test of organic crystal structure prediction methods are presented and discussed, highlighting progress for salts, hydrates and bulky flexible molecules, as well as on-going challenges.


International Journal of Pharmaceutics | 2011

Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction

Andrei V. Kazantsev; Panagiotis G. Karamertzanis; Claire S. Adjiman; Constantinos C. Pantelides; Sarah L. Price; Peter T. A. Galek; Graeme M. Day; Aurora J. Cruz-Cabeza

The range of target structures in the fifth international blind test of crystal structure prediction was extended to include a highly flexible molecule, (benzyl-(4-(4-methyl-5-(p-tolylsulfonyl)-1,3-thiazol-2-yl)phenyl)carbamate, as a challenge representative of modern pharmaceuticals. Two of the groups participating in the blind test independently predicted the correct structure. The methods they used are described and contrasted, and the implications of the capability to tackle molecules of this complexity are discussed.


CrystEngComm | 2015

Static and lattice vibrational energy differences between polymorphs

Jonas Nyman; Graeme M. Day

A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom–atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol−1 and lattice energy differences exceed 7.2 kJ mol−1 in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol−1. However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs.

Collaboration


Dive into the Graeme M. Day's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah L. Price

University College London

View shared research outputs
Top Co-Authors

Avatar

Kim E. Jelfs

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Hasell

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge