Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham C. Burdge is active.

Publication


Featured researches published by Graham C. Burdge.


British Journal of Nutrition | 2002

Conversion of α-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women

Graham C. Burdge; Stephen A. Wootton

The extent to which women of reproductive age are able to convert the n-3 fatty acid alpha-linolenic acid (ALNA) to eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) was investigated in vivo by measuring the concentrations of labelled fatty acids in plasma for 21 d following the ingestion of [U-13C]ALNA (700 mg). [13C]ALNA excursion was greatest in cholesteryl ester (CE) (224 (sem 70) micromol/l over 21 d) compared with triacylglycerol (9-fold), non-esterified fatty acids (37-fold) and phosphatidylcholine (PC, 7-fold). EPA excursion was similar in both PC (42 (sem 8) micromol/l) and CE (42 (sem 9) micromol/l) over 21 d. In contrast both [13C]DPA and [13C]DHA were detected predominately in PC (18 (sem 4) and 27 (sem 7) micromol/l over 21 d, respectively). Estimated net fractional ALNA inter-conversion was EPA 21 %, DPA 6 % and DHA 9 %. Approximately 22 % of administered [13C]ALNA was recovered as 13CO2 on breath over the first 24 h of the study. These results suggest differential partitioning of ALNA, EPA and DHA between plasma lipid classes, which may facilitate targeting of individual n-3 fatty acids to specific tissues. Comparison with previous studies suggests that women may possess a greater capacity for ALNA conversion than men. Such metabolic capacity may be important for meeting the demands of the fetus and neonate for DHA during pregnancy and lactation. Differences in DHA status between women both in the non-pregnant state and in pregnancy may reflect variations in metabolic capacity for DHA synthesis.


Diabetes | 2011

Epigenetic Gene Promoter Methylation at Birth Is Associated With Child’s Later Adiposity

Keith M. Godfrey; Allan Sheppard; Peter D. Gluckman; Karen A. Lillycrop; Graham C. Burdge; Cameron McLean; Joanne Rodford; J.L. Slater-Jefferies; Emma Garratt; Sarah Crozier; B. Starling Emerald; Catharine R. Gale; Hazel Inskip; C Cooper; Mark A. Hanson

OBJECTIVE Fixed genomic variation explains only a small proportion of the risk of adiposity. In animal models, maternal diet alters offspring body composition, accompanied by epigenetic changes in metabolic control genes. Little is known about whether such processes operate in humans. RESEARCH DESIGN AND METHODS Using Sequenom MassARRAY we measured the methylation status of 68 CpGs 5′ from five candidate genes in umbilical cord tissue DNA from healthy neonates. Methylation varied greatly at particular CpGs: for 31 CpGs with median methylation ≥5% and a 5–95% range ≥10%, we related methylation status to maternal pregnancy diet and to child’s adiposity at age 9 years. Replication was sought in a second independent cohort. RESULTS In cohort 1, retinoid X receptor-α (RXRA) chr9:136355885+ and endothelial nitric oxide synthase (eNOS) chr7:150315553+ methylation had independent associations with sex-adjusted childhood fat mass (exponentiated regression coefficient [β] 17% per SD change in methylation [95% CI 4–31], P = 0.009, n = 64, and β = 20% [9–32], P < 0.001, n = 66, respectively) and %fat mass (β = 10% [1–19], P = 0.023, n = 64 and β =12% [4–20], P = 0.002, n = 66, respectively). Regression analyses including sex and neonatal epigenetic marks explained >25% of the variance in childhood adiposity. Higher methylation of RXRA chr9:136355885+, but not of eNOS chr7:150315553+, was associated with lower maternal carbohydrate intake in early pregnancy, previously linked with higher neonatal adiposity in this population. In cohort 2, cord eNOS chr7:150315553+ methylation showed no association with adiposity, but RXRA chr9:136355885+ methylation showed similar associations with fat mass and %fat mass (β = 6% [2–10] and β = 4% [1–7], respectively, both P = 0.002, n = 239). CONCLUSIONS Our findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis. Perinatal epigenetic analysis may have utility in identifying individual vulnerability to later obesity and metabolic disease.


British Journal of Nutrition | 2007

Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications

Karen A. Lillycrop; Jo Slater-Jefferies; Mark A. Hanson; Keith M. Godfrey; Alan A. Jackson; Graham C. Burdge

Prenatal nutritional constraint induces an altered metabolic phenotype in the offspring which in humans confers an increased risk of non-communicable disease. Feeding a protein-restricted (PR) diet to pregnant rats causes hypomethylation of specific gene promoters in the offspring and alters the phenotype. We investigated how altered epigenetic regulation of the hepatic glucocorticoid receptor (GR) 1(10) promoter is induced in the offspring. Rats were fed a control (180 g casein/kg) or a PR (90 g casein/kg) diet throughout pregnancy, and chow during lactation. Offspring were killed at postnatal day 34 (n 5 per maternal dietary group). Methylation-sensitive PCR showed that GR1(10) promoter methylation was 33 % lower (P < 0.001) and GR expression 84 % higher (P < 0.05) in the PR offspring. Reverse transcription-PCR showed that DNA methyltransferase-1 (Dnmt1) expression was 17 % lower (P < 0.05) in PR offspring, while Dnmt3a/b and methyl binding domain protein-2 expression was not altered. Thus hypomethylation of the GR110 promoter may result from lower capacity to methylate hemimethylated DNA during mitosis. Histone modifications which facilitate transcription were increased at the GR1(10) promoter (147-921 %, P < 0.001), while those that suppress methylation were decreased (54 %, P < 0.01) or similar to controls. In human umbilical cord (n 15), there was a 2-fold difference between the highest and lowest level of GR1-CTotal promoter methylation. Dnmt1, but not Dnmt3a, expression predicted 49 % (P = 0.003) of the variation in GR1-CTotal promoter methylation. These findings suggest that induction in the offspring of altered epigenetic regulation of the hepatic GR1(10) promoter, and hence metabolic phenotype, may be due to reduced Dnmt1 expression.


British Journal of Nutrition | 2002

Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men

Graham C. Burdge; Amanda E. Jones; Stephen A. Wootton

The capacity for conversion of alpha-linolenic acid (ALNA) to n-3 long-chain polyunsaturated fatty acids was investigated in young men. Emulsified [U-13C]ALNA was administered orally with a mixed meal to six subjects consuming their habitual diet. Approximately 33 % of administered [13C]ALNA was recovered as 13CO2 on breath over the first 24 h. [13C]ALNA was mobilised from enterocytes primarily as chylomicron triacylglycerol (TAG), while [13C]ALNA incorporation into plasma phosphatidylcholine (PC) occurred later, probably by the liver. The time scale of conversion of [13C]ALNA to eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) suggested that the liver was the principal site of ALNA desaturation and elongation, although there was some indication of EPA and DPA synthesis by enterocytes. [13C]EPA and [13C]DPA concentrations were greater in plasma PC than TAG, and were present in the circulation for up to 7 and 14 d, respectively. There was no apparent 13C enrichment of docosahexaenoic acid (DHA) in plasma PC, TAG or non-esterified fatty acids at any time point measured up to 21 d. This pattern of 13C n-3 fatty acid labelling suggests inhibition or restriction of DHA synthesis downstream of DPA. [13C]ALNA, [13C]EPA and [13C]DPA were incorporated into erythrocyte PC, but not phosphatidylethanolamine, suggesting uptake of intact plasma PC molecules from lipoproteins into erythrocyte membranes. Since the capacity of adult males to convert ALNA to DHA was either very low or absent, uptake of pre-formed DHA from the diet may be critical for maintaining adequate membrane DHA concentrations in these individuals.


British Journal of Nutrition | 2008

Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARα promoter of the offspring

Karen A. Lillycrop; Emma S. Phillips; Christopher Torrens; Mark A. Hanson; Alan A. Jackson; Graham C. Burdge

Induction of an altered phenotype by prenatal under-nutrition involves changes in the epigenetic regulation of specific genes. We investigated the effect of feeding pregnant rats a protein-restricted (PR) diet with different amounts of folic acid on the methylation of individual CpG dinucleotides in the hepatic PPAR alpha promoter in juvenile offspring, and the effect of the maternal PR diet on CpG methylation in adult offspring. Pregnant rats (five per group) were fed 180 g/kg casein (control) or 90 g/kg casein with 1 mg/kg folic acid (PR), or 90 g/kg casein and 5 mg/kg folic acid (PRF). Offspring were killed on postnatal day 34 (five males and females per group) and day 80 (five males per group). Methylation of sixteen CpG dinucleotides in the PPAR alpha promoter was measured by pyrosequencing. Mean PPAR alpha promoter methylation in the PR offspring (4.5 %) was 26 % lower than controls (6.1 %) due to specific reduction at CpG dinucleotides 2 (40 %), 3 (43 %), 4 (33 %) and 16 (48 %) (P < 0.05). There was no significant difference in methylation at these CpG between control and PRF offspring. Methylation of CpG 5 and 8 was higher (47 and 63 %, respectively, P < 0.05) in the PRF offspring than control or PR offspring. The methylation pattern in day 80 PR offspring was comparable to day 34 PR offspring. These data show for the first time that prenatal nutrition induces differential changes to the methylation of individual CpG dinucleotides in juvenile rats which persist in adults.


Pediatric Research | 2007

Epigenetic Mechanisms and the Mismatch Concept of the Developmental Origins of Health and Disease

Keith M. Godfrey; Karen A. Lillycrop; Graham C. Burdge; Peter D. Gluckman; Mark A. Hanson

There is now considerable evidence that elements of the heritable or familial component of disease susceptibility are transmitted by nongenomic means, and that environmental influences acting during early development shape disease risk in later life. The underlying mechanisms are thought to involve epigenetic modifications in nonimprinted genes induced by aspects of the developmental environment, which modify gene expression without altering DNA sequences. These changes result in life-long alterations in gene expression. Such nongenomic tuning of phenotype through developmental plasticity has adaptive value because it attempts to match an individuals responses to the environment predicted to be experienced. When the responses are mismatched, disease risk increases. An example of such mismatch is that arising either from inaccurate nutritional cues from the mother or placenta before birth, or from rapid environmental change through improved socioeconomic conditions, which contribute substantially to the increasing prevalence of type-2 diabetes, obesity, and cardiovascular disease. Recent evidence suggests that the effects can be transmitted to more than the immediately succeeding generation, through female and perhaps male lines. Future research into epigenetic processes may permit us to develop intervention strategies.


British Journal of Nutrition | 2007

Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations.

Graham C. Burdge; Jo Slater-Jefferies; Christopher Torrens; Emma S. Phillips; Mark A. Hanson; Karen A. Lillycrop

Epidemiological studies and experimental models show that maternal nutritional constraint during pregnancy alters the metabolic phenotype of the offspring and that this can be passed to subsequent generations. In the rat, induction of an altered metabolic phenotype in the liver of the F1 generation by feeding a protein-restricted diet (PRD) during pregnancy involves the altered methylation of specific gene promoters. We therefore investigated whether the altered methylation of PPARalpha and glucocorticoid receptor (GR) promoters was passed to the F2 generation. Females rats (F0) were fed a reference diet (180 g/kg protein) or PRD (90 g/kg protein) throughout gestation, and AIN-76A during lactation. The F1 offspring were weaned onto AIN-76A. F1 females were mated and fed AIN-76A throughout pregnancy and lactation. F1 and F2 males were killed on postnatal day 80. Hepatic PPARalpha and GR promoter methylation was significantly (P<0 x 05) lower in the PRD group in the F1 (PPARalpha 8 %, GR 10 %) and F2 (PPARalpha 11 %, GR 8 %) generations. There were trends (P<0 x 1) towards a higher expression of PPARalpha, GR, acyl-CoA oxidase and phosphoenolpyruvate carboxykinase (PEPCK) in the F1 and F2 males, although this was significant only for PEPCK. These data show for the first time that the altered methylation of gene promoters induced in the F1 generation by maternal protein restriction during pregnancy is transmitted to the F2 generation. This may represent a mechanism for the transmission of induced phenotypes between generations


Current Opinion in Clinical Nutrition and Metabolic Care | 2004

[alpha]-Linolenic acid metabolism in men and women: nutritional and biological implications

Graham C. Burdge

PURPOSE OF REVIEW This review critically evaluates current knowledge of alpha-linolenic acid metabolism in adult humans based on the findings of studies using stable isotope tracers and on increased dietary alpha-linolenic acid intake. The relative roles of alpha-linolenic acid and of longer-chain polyunsaturated fatty acids in cell structure and function are discussed together with an overview of the major metabolic fates of alpha-linolenic acid. The extent of partitioning towards beta-oxidation and carbon recycling in humans is described. The use and limitations of stable isotope tracers to estimate alpha-linolenic acid desaturation and elongation are discussed. A consensus view of the extent of alpha-linolenic acid conversion to longer-chain fatty acids in humans is presented. The extent to which increasing dietary alpha-linolenic acid intake alters the concentrations of longer-chain n-3 fatty acids is described. The biological and nutritional implications of these findings are discussed. RECENT FINDINGS Conversion of alpha-linolenic acid to eicosapentaenoic acid is limited in men and further transformation to docosahexaenoic acid is very low. A lower proportion of alpha-linolenic acid is used as a substrate for beta-oxidation in women compared with men, while the fractional conversion to longer-chain fatty acids is greater, possibly due to the regulatory effects of oestrogen. SUMMARY Overall, alpha-linolenic acid appears to be a limited source of longer-chain n-3 fatty acids in man and so adequate intakes of preformed n-3 polyunsaturated fatty acids, in particular docosahexaenoic acid, may be important for maintaining optimal tissue function. Capacity to upregulate alpha-linolenic acid transformation in women may be important for meeting the demands of the fetus and neonate for docosahexaenoic acid.


Annual Review of Nutrition | 2010

Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease.

Graham C. Burdge; Karen A. Lillycrop

There is considerable evidence for induction of differential risk of noncommunicable diseases in humans by variation in the quality of the early life environment. Studies in animal models show that induction and stability of induced changes in the phenotype of the offspring involve altered epigenetic regulation by DNA methylation and covalent modifications of histones. These findings indicate that such epigenetic changes are highly gene specific and function at the level of individual CpG dinucleotides. Interventions using supplementation with folic acid or methyl donors during pregnancy, or folic acid after weaning, alter the phenotype and epigenotype induced by maternal dietary constraint during gestation. This suggests a possible means for reducing risk of induced noncommunicable disease, although the design and conduct of such interventions may require caution. The purpose of this review is to discuss recent advances in understanding the mechanism that underlies the early life origins of disease and to place these studies in a broader life-course context.


Hepatology | 2009

Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression.

Kimberley D. Bruce; Felino R. Cagampang; Marco Argenton; Junlong Zhang; Priya L. Ethirajan; Graham C. Burdge; Adrian C Bateman; Geraldine F. Clough; Lucilla Poston; Mark A. Hanson; Josie McConnell; Christopher D. Byrne

Nonalcoholic fatty liver disease (NAFLD) describes an increasingly prevalent spectrum of liver disorders associated with obesity and metabolic syndrome. It is uncertain why steatosis occurs in some individuals, whereas nonalcoholic steatohepatitis (NASH) occurs in others. We have generated a novel mouse model to test our hypothesis: that maternal fat intake contributes to the development of NAFLD in adult offspring. Female mice were fed either a high‐fat (HF) or control chow (C) diet before and during gestation and lactation. Resulting offspring were fed either a C or a HF diet after weaning, to generate four offspring groups; HF/HF, HF/C, C/HF, C/C. At 15 weeks of age, liver histology was normal in both the C/C and HF/C offspring. Kleiner scoring showed that although the C/HF offspring developed nonalcoholic fatty liver, the HF/HF offspring developed NASH. At 30 weeks, histological analysis and Kleiner scoring showed that both the HF/C and C/HF groups had NAFLD, whereas the HF/HF had a more severe form of NASH. Therefore, exposure to a HF diet in utero and during lactation contributes toward NAFLD progression. We investigated the mechanisms by which this developmental priming is mediated. At 15 weeks of age, hepatic mitochondrial electron transport chain (ETC) enzyme complex activity (I, II/III, and IV) was reduced in both groups of offspring from HF‐fed mothers (HF/C and HF/HF). In addition, measurement of hepatic gene expression indicated that lipogenesis, oxidative stress, and inflammatory pathways were up‐regulated in the 15‐week‐old HF/C and HF/HF offspring. Conclusion: Maternal fat intake contributes toward the NAFLD progression in adult offspring, which is mediated through impaired hepatic mitochondrial metabolism and up‐regulated hepatic lipogenesis. (HEPATOLOGY 2009.)

Collaboration


Dive into the Graham C. Burdge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Hanson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith M. Godfrey

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan A. Jackson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel P. Hoile

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge