Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham Knott is active.

Publication


Featured researches published by Graham Knott.


Nature | 2002

Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex

Joshua T. Trachtenberg; Brian E. Chen; Graham Knott; Guoping Feng; Joshua R. Sanes; Egbert Welker; Karel Svoboda

Do new synapses form in the adult cortex to support experience-dependent plasticity? To address this question, we repeatedly imaged individual pyramidal neurons in the mouse barrel cortex over periods of weeks. We found that, although dendritic structure is stable, some spines appear and disappear. Spine lifetimes vary greatly: stable spines, about 50% of the population, persist for at least a month, whereas the remainder are present for a few days or less. Serial-section electron microscopy of imaged dendritic segments revealed retrospectively that spine sprouting and retraction are associated with synapse formation and elimination. Experience-dependent plasticity of cortical receptive fields was accompanied by increased synapse turnover. Our measurements suggest that sensory experience drives the formation and elimination of synapses and that these changes might underlie adaptive remodelling of neural circuits.


Neuron | 2005

Transient and Persistent Dendritic Spines in the Neocortex In Vivo

Anthony Holtmaat; Joshua T. Trachtenberg; Linda Wilbrecht; Gordon M. G. Shepherd; Xiaoqun Zhang; Graham Knott; Karel Svoboda

Dendritic spines were imaged over days to months in the apical tufts of neocortical pyramidal neurons (layers 5 and 2/3) in vivo. A fraction of thin spines appeared and disappeared over a few days, while most thick spines persisted for months. In the somatosensory cortex, from postnatal day (PND) 16 to PND 25 spine retractions exceeded additions, resulting in a net loss of spines. The fraction of persistent spines (lifetime > or = 8 days) grew gradually during development and into adulthood (PND 16-25, 35%; PND 35-80, 54%; PND 80-120, 66%; PND 175-225, 73%), providing evidence that synaptic circuits continue to stabilize even in the adult brain, long after the closure of known critical periods. In 6-month-old mice, spines turn over more slowly in visual compared to somatosensory cortex, possibly reflecting differences in the capacity for experience-dependent plasticity in these brain regions.


Nature | 2006

Experience-dependent and cell-type-specific spine growth in the neocortex

Anthony Holtmaat; Linda Wilbrecht; Graham Knott; Egbert Welker; Karel Svoboda

Functional circuits in the adult neocortex adjust to novel sensory experience, but the underlying synaptic mechanisms remain unknown. Growth and retraction of dendritic spines with synapse formation and elimination could change brain circuits. In the apical tufts of layer 5B (L5B) pyramidal neurons in the mouse barrel cortex, a subset of dendritic spines appear and disappear over days, whereas most spines are persistent for months. Under baseline conditions, new spines are mostly transient and rarely survive for more than a week. Transient spines tend to be small, whereas persistent spines are usually large. Because most excitatory synapses in the cortex occur on spines, and because synapse size and the number of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are proportional to spine volume, the excitation of pyramidal neurons is probably driven through synapses on persistent spines. Here we test whether the generation and loss of persistent spines are enhanced by novel sensory experience. We repeatedly imaged dendritic spines for one month after trimming alternate whiskers, a paradigm that induces adaptive functional changes in neocortical circuits. Whisker trimming stabilized new spines and destabilized previously persistent spines. New-persistent spines always formed synapses. They were preferentially added on L5B neurons with complex apical tufts rather than simple tufts. Our data indicate that novel sensory experience drives the stabilization of new spines on subclasses of cortical neurons. These synaptic changes probably underlie experience-dependent remodelling of specific neocortical circuits.


Nature Protocols | 2009

Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window

Anthony Holtmaat; Tobias Bonhoeffer; David K. Chow; Ja Chuckowree; Vincenzo De Paola; Sonja B. Hofer; Mark Hübener; Tara Keck; Graham Knott; Wei-Chung Allen Lee; Ricardo Mostany; Thomas D. Mrsic-Flogel; Elly Nedivi; Carlos Portera-Cailliau; Karel Svoboda; Joshua T Trachtenberg; Linda Wilbrecht

To understand the cellular and circuit mechanisms of experience-dependent plasticity, neurons and their synapses need to be studied in the intact brain over extended periods of time. Two-photon excitation laser scanning microscopy (2PLSM), together with expression of fluorescent proteins, enables high-resolution imaging of neuronal structure in vivo. In this protocol we describe a chronic cranial window to obtain optical access to the mouse cerebral cortex for long-term imaging. A small bone flap is replaced with a coverglass, which is permanently sealed in place with dental acrylic, providing a clear imaging window with a large field of view (∼0.8–12 mm2). The surgical procedure can be completed within ∼1 h. The preparation allows imaging over time periods of months with arbitrary imaging intervals. The large size of the imaging window facilitates imaging of ongoing structural plasticity of small neuronal structures in mice, with low densities of labeled neurons. The entire dendritic and axonal arbor of individual neurons can be reconstructed.


Nature Neuroscience | 2006

Spine growth precedes synapse formation in the adult neocortex in vivo

Graham Knott; Anthony Holtmaat; Linda Wilbrecht; Egbert Welker; Karel Svoboda

Dendritic spines appear and disappear in an experience-dependent manner. Although some new spines have been shown to contain synapses, little is known about the relationship between spine addition and synapse formation, the relative time course of these events, or whether they are coupled to de novo growth of axonal boutons. We imaged dendrites in barrel cortex of adult mice over 1 month, tracking gains and losses of spines. Using serial section electron microscopy, we analyzed the ultrastructure of spines and associated boutons. Spines reconstructed shortly after they appeared often lacked synapses, whereas spines that persisted for 4 d or more always had synapses. New spines had a large surface-to-volume ratio and preferentially contacted boutons with other synapses. In some instances, two new spines contacted the same axon. Our data show that spine growth precedes synapse formation and that new synapses form preferentially onto existing boutons.


The Journal of Neuroscience | 2004

Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period

Bidisha Chattopadhyaya; Graziella Di Cristo; Hiroyuki Higashiyama; Graham Knott; Sandra J. Kuhlman; Egbert Welker; Z. Josh Huang

The neocortical GABAergic network consists of diverse interneuron cell types that display distinct physiological properties and target their innervations to subcellular compartments of principal neurons. Inhibition directed toward the soma and proximal dendrites is crucial in regulating the output of pyramidal neurons, but the development of perisomatic innervation is poorly understood because of the lack of specific synaptic markers. In the primary visual cortex, for example, it is unknown whether, and to what extent, the formation and maturation of perisomatic synapses are intrinsic to cortical circuits or are regulated by sensory experience. Using bacterial artificial chromosome transgenic mice that label a defined class of perisomatic synapses with green fluorescent protein, here we show that perisomatic innervation developed during a protracted postnatal period after eye opening. Maturation of perisomatic innervation was significantly retarded by visual deprivation during the third, but not the fifth, postnatal week, implicating an important role for sensory input. To examine the role of cortical intrinsic mechanisms, we developed a method to visualize perisomatic synapses from single basket interneurons in cortical organotypic cultures. Characteristic perisomatic synapses formed through a stereotyped process, involving the extension of distinct terminal branches and proliferation of perisomatic boutons. Neuronal spiking in organotypic cultures was necessary for the proliferation of boutons and the extension, but not the maintenance, of terminal branches. Together, our results suggest that although the formation of perisomatic synapses is intrinsic to the cortex, visual experience can influence the maturation and pattern of perisomatic innervation during a postnatal critical period by modulating the level of neural activity within cortical circuits.


Nature | 2013

Mitonuclear protein imbalance as a conserved longevity mechanism

Riekelt H. Houtkooper; Laurent Mouchiroud; Dongryeol Ryu; Norman Moullan; Elena Katsyuba; Graham Knott; Robert W. Williams; Johan Auwerx

Longevity is regulated by a network of closely linked metabolic systems. We used a combination of mouse population genetics and RNA interference in Caenorhabditis elegans to identify mitochondrial ribosomal protein S5 (Mrps5) and other mitochondrial ribosomal proteins as metabolic and longevity regulators. MRP knockdown triggers mitonuclear protein imbalance, reducing mitochondrial respiration and activating the mitochondrial unfolded protein response. Specific antibiotics targeting mitochondrial translation and ethidium bromide (which impairs mitochondrial DNA transcription) pharmacologically mimic mrp knockdown and extend worm lifespan by inducing mitonuclear protein imbalance, a stoichiometric imbalance between nuclear and mitochondrially encoded proteins. This mechanism was also conserved in mammalian cells. In addition, resveratrol and rapamycin, longevity compounds acting on different molecular targets, similarly induced mitonuclear protein imbalance, the mitochondrial unfolded protein response and lifespan extension in C. elegans. Collectively these data demonstrate that MRPs represent an evolutionarily conserved protein family that ties the mitochondrial ribosome and mitonuclear protein imbalance to the mitochondrial unfolded protein response, an overarching longevity pathway across many species.


The Journal of Neuroscience | 2008

Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling

Graham Knott; Herschel Marchman; D Wall; Ben Lich

### Introduction Analyzing the synaptic basis of neuronal circuits within a volume of brain tissue requires electron microscopy. With a resolution capable of seeing the smallest synaptic contacts, this method uses different sectioning techniques to produce serial images suitable for seeing the


Neuron | 2002

Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice

Graham Knott; Charles Quairiaux; Christel Genoud; Egbert Welker

During development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex.


Neuron | 2006

Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex

Vincenzo De Paola; Anthony Holtmaat; Graham Knott; Sen Song; Linda Wilbrecht; Pico Caroni; Karel Svoboda

We imaged axons in layer (L) 1 of the mouse barrel cortex in vivo. Axons from thalamus and L2/3/5, or L6 pyramidal cells were identified based on their distinct morphologies. Their branching patterns and sizes were stable over times of months. However, axonal branches and boutons displayed cell type-specific rearrangements. Structural plasticity in thalamocortical afferents was mostly due to elongation and retraction of branches (range, 1-150 microm over 4 days; approximately 5% of total axonal length), while the majority of boutons persisted for up to 9 months (persistence over 1 month approximately 85%). In contrast, L6 axon terminaux boutons were highly plastic (persistence over 1 month approximately 40 %), and other intracortical axon boutons showed intermediate levels of plasticity. Retrospective electron microscopy revealed that new boutons make synapses. Our data suggest that structural plasticity of axonal branches and boutons contributes to the remodeling of specific functional circuits.

Collaboration


Dive into the Graham Knott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bohumil Maco

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pd Kitchener

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Fua

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karel Svoboda

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

A Deal

University of Tasmania

View shared research outputs
Researchain Logo
Decentralizing Knowledge