Graham L. Simpson
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graham L. Simpson.
Chemistry & Biology | 2011
Jingsong Yang; Nino Campobasso; Mangatt P. Biju; Kelly E. Fisher; Xiao-Qing Pan; Josh Cottom; Sarah Galbraith; Thau Ho; Hong Zhang; Xuan Hong; Paris Ward; Glenn A. Hofmann; Brett Siegfried; Francesca Zappacosta; Yoshiaki Washio; Ping Cao; Junya Qu; Sophie M. Bertrand; Da-Yuan Wang; Martha S. Head; Hu Li; Sheri L. Moores; Zhihong Lai; Kyung Johanson; George Burton; Connie L. Erickson-Miller; Graham L. Simpson; Peter J. Tummino; Robert A. Copeland; Allen Oliff
c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the αI helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the αI helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.
Bioorganic & Medicinal Chemistry | 2015
Praew Thansandote; Robert M. Harris; Hannah L. Dexter; Graham L. Simpson; Sandeep Pal; Richard J. Upton; Klara Valko
A number of methods to improve the passive permeability of a set of cyclic peptides have been investigated using 6- and 7-mer macrocyclic templates. In many cases the peptides were designed by molecular dynamics calculations to evaluate the methods. The aim of this study was not only to improve passive permeability, but also to balance permeability with other physicochemical properties with the goal of understanding and applying the knowledge to develop active cyclic peptides into drug candidates. Evaluation of the methods herein suggest that increasing passive permeability often occurs at the expense of solubility and lipophilicity. Computational methods can be useful when attempting to predict and design features to balance these properties, though limitations were observed.
Journal of Organic Chemistry | 2010
Timothy P. Heffron; Graham L. Simpson; Estibaliz Merino; Timothy F. Jamison
Epoxide-opening cascades offer the potential to construct complex polyether natural products expeditiously and in a manner that emulates the biogenesis proposed for these compounds. Herein we provide a full account of our development of a strategy that addresses several important challenges of such cascades. The centerpiece of the method is a trimethylsilyl (SiMe(3)) group that serves several purposes and leaves no trace of itself by the time the cascade has come to an end. The main function of the SiMe(3) group is to dictate the regioselectivity of epoxide opening. This strategy is the only general method of effecting endo-selective cascades under basic conditions.
Journal of Medicinal Chemistry | 2015
Sophie M. Bertrand; Nicolas Ancellin; Benjamin Beaufils; Ryan P. Bingham; Jennifer A. Borthwick; Anne Bénédicte Boullay; Eric Boursier; Paul S. Carter; Chun Wa Chung; Ian Churcher; Nerina Dodic; Marie Hélène Fouchet; Charlène Fournier; Peter Francis; Laura A. Gummer; Kenny Herry; Andrew Hobbs; Clare I. Hobbs; Paul Homes; Craig Jamieson; Edwige Nicodeme; Stephen D. Pickett; Iain H. Reid; Graham L. Simpson; Lisa A. Sloan; Sarah E. Smith; Donald O. Somers; Claus Spitzfaden; Colin J. Suckling; Klara Valko
The hybridization of hits, identified by complementary fragment and high throughput screens, enabled the discovery of the first series of potent inhibitors of mitochondrial branched-chain aminotransferase (BCATm) based on a 2-benzylamino-pyrazolo[1,5-a]pyrimidinone-3-carbonitrile template. Structure-guided growth enabled rapid optimization of potency with maintenance of ligand efficiency, while the focus on physicochemical properties delivered compounds with excellent pharmacokinetic exposure that enabled a proof of concept experiment in mice. Oral administration of 2-((4-chloro-2,6-difluorobenzyl)amino)-7-oxo-5-propyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile 61 significantly raised the circulating levels of the branched-chain amino acids leucine, isoleucine, and valine in this acute study.
Methods | 2014
Michael M. Hann; Graham L. Simpson
Improved understanding of the concentration of a potential drug molecule at the site of action in physiologically relevant cells or tissues has emerged as a key challenge in the early stages of drug discovery. Improved ability to carry out such studies with label-free methodology has the potential to improve understanding of drug uptake and trafficking and thus contribute to the reduction of rates of attrition in drug discovery.
Journal of Organic Chemistry | 2012
Mark Daly; Alastair A. Cant; Lindsay S. Fowler; Graham L. Simpson; Hans Martin Senn; Andrew Sutherland
A base-mediated 6-endo-trig cyclization of readily accessible enone-derived α-amino acids has been developed for the direct synthesis of novel 2,6-cis-6-substituted-4-oxo-L-pipecolic acids. A range of aliphatic and aryl side chains were tolerated by this mild procedure to give the target compounds in good overall yields. Molecular modeling of the 6-endo-trig cyclization allowed some insight as to how these compounds were formed, with the enolate intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-l-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed.
ACS Chemical Biology | 2017
Zhengrong Zhu; Alex Shaginian; LaShadric C. Grady; Thomas O’Keeffe; Xiangguo E. Shi; Christopher P. Davie; Graham L. Simpson; Jeffrey A. Messer; Ghotas Evindar; Robert N. Bream; Praew Thansandote; Naomi R. Prentice; Andrew M. Mason; Sandeep Pal
A DNA-encoded macrocyclic peptide library was designed and synthesized with 2.4 × 1012 members composed of 4-20 natural and non-natural amino acids. Affinity-based selection was performed against two therapeutic targets, VHL and RSV N protein. On the basis of selection data, some peptides were selected for resynthesis without a DNA tag, and their activity was confirmed.
Journal of Computer-aided Molecular Design | 2014
Xuan Hong; Ping Cao; Yoshiaki Washio; Graham L. Simpson; Nino Campobasso; Jingsong Yang; Jennifer A. Borthwick; George Burton; Julien Chabanet; Sophie M. Bertrand; Helen Evans; Robert J. Young; Junya Qu; Hu Li; Josh Cottom; Paris Ward; Hong Zhang; Thau Ho; Donghui Qin; Siegfried B. Christensen; Martha S. Head
Abstractc-Abl kinase is maintained in its normal inactive state in the cell through an assembled, compact conformation. We describe two chemical series that bind to the myristoyl site of the c-Abl kinase domain and stimulate c-Abl activation. We hypothesize that these molecules activate c-Abl either by blocking the C-terminal helix from adopting a bent conformation that is critical for the formation of the autoinhibited conformation or by simply providing no stabilizing interactions to the bent conformation of this helix. Structure-based molecular modeling guided the optimization of binding and activation of c-Abl of these two chemical series and led to the discovery of c-Abl activators with nanomolar potency. The small molecule c-Abl activators reported herein could be used as molecular tools to investigate the biological functions of c-Abl and therapeutic implications of its activation.
Journal of the American Chemical Society | 2006
Graham L. Simpson; Timothy P. Heffron; Estibaliz Merino; Timothy F. Jamison
Journal of Medicinal Chemistry | 2002
Christopher G. V. Sharples; Gunter Karig; Graham L. Simpson; James Spencer; Emma Wright; Neil S. Millar; Susan Wonnacott; Timothy Gallagher