Graham Molineux
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graham Molineux.
Advanced Drug Delivery Reviews | 2002
Olaf B. Kinstler; Graham Molineux; Michael J. Treuheit; David Ladd; Colin V. Gegg
A site-directed method of joining proteins to poly(ethylene glycol) is presented which allows for the preparation of essentially homogeneous PEG-protein derivatives with a single PEG chain conjugated to the amine terminus of the protein. This selectivity is achieved by conducting the reductive alkylation of proteins with PEG-aldehydes at lower pH. Working examples demonstrating the application of this method to improve the delivery characteristics and therapeutic value of several proteins are provided.
Experimental Hematology | 1999
Graham Molineux; Olaf B. Kinstler; Bob Briddell; Cynthia Hartley; Patricia McElroy; Patrick Kerzic; Weston Sutherland; Greg Stoney; Brent Kern; Frederick A. Fletcher; Art Cohen; Elliot Korach; Tom Ulich; Ian K. McNiece; Pamela Lockbaum; Mary Ann Miller-Messana; Sheila Gardner; Thomas Hunt; Gisela Schwab
Granulocyte colony-stimulating factor (G-CSF) has proven effective in the prophylaxis of chemotherapy-induced neutropenia and as a mobilizer of peripheral blood progenitor cells. The longevity of G-CSF action is limited by its removal from the body by two mechanisms. The first is thought to be mediated via receptors (receptor mediated clearance [RMC]) predominantly on neutrophils, the second process is likely the result of renal clearance. With the intention of developing a novel form of Filgrastim (r-met HuG-CSF) with a sustained duration of action in vivo, a new derivative named SD/01 has been made by association of Filgrastim with poly(ethylene glycol). The desired properties of this new agent would include a prolonged duration of action sufficient to cover a complete single course of chemotherapy. SD/01 is shown here to sustain significantly elevated neutrophil counts in hematopoietically normal mice for 5 days. In neutropenic mice effects were noted for at least 9 days, accompanying a significant reduction in the duration of chemotherapy induced neutropenia. Normal human volunteers showed higher than baseline ANC for around 9 to 10 days after a single injection of SD/01. Data from these normal volunteers also indicate that mobilization of CD34+ cells and progenitors may occur in a more timely manner and to around the same absolute numbers as with repeated daily injections of unmodified Filgrastim. These data indicate that SD/01 represents an efficacious novel form of Filgrastim with actions sustained for between one and two weeks from a single injection.
Blood | 2010
Barbra Sasu; Keegan Cooke; Tara Arvedson; Plewa C; Ellison Ar; Sheng J; Aaron George Winters; Juan T; Li H; Begley Cg; Graham Molineux
Iron maldistribution has been implicated in multiple diseases, including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino acid peptide. Hepcidin is induced by inflammation, causes iron to be sequestered, and thus, potentially contributes to AI. Human hepcidin (hHepc) overexpression in mice caused an iron-deficient phenotype, including stunted growth, hair loss, and iron-deficient erythropoiesis. It also caused resistance to supraphysiologic levels of erythropoiesis-stimulating agent, supporting the hypothesis that hepcidin may influence response to treatment in AI. To explore the role of hepcidin in inflammatory anemia, a mouse AI model was developed with heat-killed Brucella abortus treatment. Suppression of hepcidin mRNA was a successful anemia treatment in this model. High-affinity antibodies specific for hHepc were generated, and hHepc knock-in mice were produced to enable antibody testing. Antibody treatment neutralized hHepc in vitro and in vivo and facilitated anemia treatment in hHepc knock-in mice with AI. These data indicate that antihepcidin antibodies may be an effective treatment for patients with inflammatory anemia. The ability to manipulate iron metabolism in vivo may also allow investigation of the role of iron in a number of other pathologic conditions.
Pharmacotherapy | 2003
Graham Molineux
Pegylation, the technology of polyethylene glycol (PEG) conjugation, holds significant promise in maintaining effective plasma concentrations of systemically administered drugs that might otherwise be hampered in vivo by a number of factors, such as rapid elimination by the kidneys. Mobile, nontoxic PEG chains can be conjugated to biotherapeutics, increasing their hydrodynamic volume, which can in turn prolong their plasma retention time, increase their solubility, and shield antigenic determinants on the drug from detection by the immune system. Attaching PEG molecules for optimal pharmacokinetics without obstructing the active sites that are essential for drug efficacy is a major challenge in pegylation. Current pegylation technology uses linkerless conjugation methods to produce coupling without added toxicity or immunogenicity, and may keep the innate surface charge of the pegylated molecule intact. In addition to controlling the size and complexity of PEG molecules, the attachment site can be manipulated to avoid steric hindrance of the drugs active receptor‐recognition or substrate‐interaction site. A few pegylated drugs have been engineered to have an improved pharmacokinetic profile with preserved bioactivity. They often have prolonged steady plasma concentrations in vivo, thereby making a reduced number of doses possible. Other interesting effects have also emerged, such as the self‐regulating pharmacokinetics of pegfilgrastim, a pegylated version of the granulocyte colony‐stimulating factor filgrastim that is administered for management of chemotherapy‐induced neutropenia. The improved dosing schedule, with longer intervals between administrations of the pegylated agents, will improve compliance and quality of life in patients with chronic disease.
Blood | 2013
Keegan Cooke; Hinkle B; Salimi-Moosavi H; Ian Foltz; Chadwick Terence King; Rathanaswami P; Aaron George Winters; Steavenson S; Begley Cg; Graham Molineux; Barbra Sasu
Iron maldistribution has been implicated in the etiology of many diseases including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino-acid peptide. Hepcidin is induced by inflammation and causes iron to be sequestered within cells of the reticuloendothelial system, suppressing erythropoiesis and blunting the activity of erythropoiesis stimulating agents (ESAs). For this reason, neutralization of hepcidin has been proposed as a therapeutic treatment of AI. The aim of the current work was to generate fully human anti-hepcidin antibodies (Abs) as a potential human therapeutic for the treatment of AI and other iron maldistribution disorders. An enzyme-linked immunosorbent assay was established using these Abs to identify patients likely to benefit from either ESAs or anti-hepcidin agents. Using human hepcidin knock-in mice, the mechanism of action of the Abs was shown to be due to an increase in available serum iron leading to enhanced red cell hemoglobinization. One of the Abs, 12B9m, was validated in a mouse model of AI and demonstrated to modulate serum iron in cynomolgus monkeys. The 12B9m Ab was deemed to be an appropriate candidate for use as a potential therapeutic to treat AI in patients with kidney disease or cancer.
British Journal of Haematology | 2000
Gerald de Haan; Albertina Ausema; Marga Wilkens; Graham Molineux; Bert Dontje
We have compared the efficacy of a single injection of SD/01, a newly engineered, pegylated form of recombinant human granulocyte colony stimulating factor (rhG‐CSF), with a single injection of glycosylated rhG‐CSF (Filgrastim). SD/01 was administered to regular and recombinant inbred strains of mice (AKR, C57L/J, DBA/2, C57BL/6, AKXL) known to have widely distinct marrow‐cell pool sizes and proliferation kinetics. A single injection of G‐CSF was unable to mobilize granulocyte–macrophage colony‐forming units (CFU‐GM). In sharp contrast, a single dose of SD/01 resulted in massive mobilization of progenitors and stem cells. Although all mice strains showed qualitatively similar mobilization responses, large interstrain differences remained. C57L and C57BL/6 mice mobilized relatively poorly, whereas AKR and DBA/2 mice showed threefold to tenfold superior responses. In order to explain these different phenotypes, we studied the effects of SD/01 in nine AKXL recombinant inbred strains, derived from well‐responding AKR and poorly responding C57L parental strains. The best predictor for SD/01 responsiveness in these strains was marrow cellularity prior to mobilization. Comparison of the AKXL strain distribution pattern for marrow cellularity with loci previously mapped in these strains showed complete concordance with Aat, a serine protease inhibitor mapping to chromosome 12.
British Journal of Haematology | 2010
Graham Molineux; Adrian C. Newland
Immune thrombocytopenia (ITP) is an autoimmune disorder characterised by abnormally low platelet counts (<100 × 109/l), purpura, and bleeding episodes, and can be categorised in three phases: newly‐diagnosed, persistent, and chronic. As many patients become refractory to standard treatments (corticosteroids, danazol, azathioprine, splenectomy), there is an urgent need for alternative treatments. The successful isolation and cloning of thrombopoietin (TPO) in the mid‐1990s and identification of its key role in platelet production was a major breakthrough, rapidly followed by the development of the recombinant thrombopoietins, recombinant human TPO and a pegylated truncated product, PEG‐rHuMGDF. Both agents increased platelet counts but development was halted because of the development of antibodies that cross‐reacted with native TPO, resulting in prolonged treatment‐refractory thrombocytopenia. Experimentation with novel platforms for extending the circulating half‐life of therapeutic peptides by combining them with antibody fragment crystallisable (Fc) constructs led to the development of a new family of molecules termed ‘peptibodies’. The 60Da recombinant peptibody romiplostim was finally produced by linking several copies of an active TPO‐binding peptide sequence to a carrier Fc fragment. In clinical trials, romiplostim was effective in ameliorating thrombocytopenia in patients with chronic ITP, was well tolerated and did not elicit cross‐reacting antibodies. Romiplostim has recently been approved for the treatment of adults with chronic ITP.
Journal of Pharmaceutical Sciences | 2009
Balaji Agoram; Ken Aoki; Sameer Doshi; Colin V. Gegg; Graham Jang; Graham Molineux; Linda O. Narhi; Steve Elliott
Erythropoietin (EPO) receptor-mediated endocytosis and degradation in the bone marrow has been hypothesized to be the major clearance pathway of erythropoiesis-stimulating agents (ESA). We investigated the role of this pathway in ESA clearance by determining the pharmacokinetic profiles after intravenous (IV) dosing in rats and mice of recombinant human EPO (rHuEPO) and rHuEPO derivatives with different receptor binding activities and biochemical properties. These derivatives included NM385 (no detectable receptor binding activity), hyperglycosylated analogs with different carbohydrate contents and receptor binding activities; (NM294: +1 carbohydrate chain; darbepoetin alfa: +2 carbohydrate chains) and polyethylene glycol (PEG) derivatives (PEG-darbepoetin alfa, PEG-rHuEPO and PEG-NM385). After IV administration in rats, NM385 had a mean clearance (CL) similar to rHuEPO. Hyperglycosylated ESAs, compared with rHuEPO, had a progressively longer half-life (t(1/2)) and a progressively slower CL with increasing number of carbohydrates or amount of added PEG that correlated more closely with carbohydrate and/or PEG content than receptor binding activity. Taken together, these results suggest that (1) EPO receptor-independent pathway(s) play a substantial role in ESA clearance; (2) the longer half-life and reduced clearance of hyperglycosylated and/or PEGylated ESAs are primarily the result of decreased susceptibility to receptor-independent elimination mechanisms.
Blood Cells Molecules and Diseases | 2010
Barbra Sasu; Hongyan Li; Mark J. Rose; Tara Arvedson; George Doellgast; Graham Molineux
Anemia in cancer patients can result from a complex interaction of numerous factors including iron deficiency, inflammation, toxicity related to therapy and effect of cancer on the marrow. Determining effective anemia treatment can therefore be complex, requiring a combination of diagnostic tests. Research on iron metabolism has highlighted the importance of hepcidin and its potential role in development of anemia of inflammation (AI). Hepcidin is a peptide that controls iron flow, is induced by inflammation and is speculated to cause the sequestration of iron in patients with inflammation. In the present study, serum hepcidin concentration determined by LC-MS/MS was shown to correlate with inflammatory markers in patients with anemia of cancer (AoC). In the absence of a widely-available serum hepcidin detection assay, detection of prohepcidin using a commercial assay has been used for several years as a surrogate for measuring serum hepcidin concentration. Analysis of prohepcidin concentration did not reveal any correlation with hepcidin or with inflammatory markers in patient samples and our data suggest that prohepcidin may not be stable in serum. Algorithms to sub-classify AoC patients showed that hepcidin was strongly associated with the population subset with inflammation and without iron deficiency. Serum hepcidin concentrations may therefore be a good predictor of AI, useful in diagnosis of anemia etiology and in treatment determination.
Acta Haematologica | 2001
George Morstyn; MaryAnn Foote; Tim Walker; Graham Molineux
SD/01, a sustained-duration molecule, has been developed by adding a poly [ethylene glycol] molecule to the filgrastim molecule. The pegylation does not change the properties of filgrastim, except that the plasma clearance is decreased and plasma half-life is increased. Increasing the duration of the biological effects of filgrastim may offer certain groups of patients better benefits. Early clinical studies have been encouraging with no serious toxicities noted.