Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham P. Stafford is active.

Publication


Featured researches published by Graham P. Stafford.


Applied and Environmental Microbiology | 2000

Molecular Analysis of the pmo (Particulate Methane Monooxygenase) Operons from Two Type II Methanotrophs

Gilbert B; Ian R. McDonald; Finch R; Graham P. Stafford; Nielsen Ak; Murrell Jc

ABSTRACT The particulate methane monooxygenase gene clusters,pmoCAB, from two representative type II methanotrophs of the α-Proteobacteria, Methylosinus trichosporium OB3b and Methylocystis sp. strain M, have been cloned and sequenced. Primer extension experiments revealed that the pmo cluster is probably transcribed from a single transcriptional start site located 300 bp upstream of the start of the first gene, pmoC, for Methylocystis sp. strain M. Immediately upstream of the putative start site, consensus sequences for ς70 promoters were identified, suggesting that thesepmo genes are recognized by ς70 and negatively regulated under low-copper conditions. The pmogenes were cloned in several overlapping fragments, since parts of these genes appeared to be toxic to the Escherichia colihost. Methanotrophs contain two virtually identical copies ofpmo genes, and it was necessary to use Southern blotting and probing with pmo gene fragments in order to differentiate between the two pmoCAB clusters in both methanotrophs. The complete DNA sequence of one copy of pmogenes from each organism is reported here. The gene sequences are 84% similar to each other and 75% similar to that of a type I methanotroph of the γ-Proteobacteria, Methylococcus capsulatus Bath. The derived proteins PmoC and PmoA are predicted to be highly hydrophobic and consist mainly of transmembrane-spanning regions, whereas PmoB has only two putative transmembrane-spanning helices. Hybridization experiments showed that there are two copies ofpmoC in both M. trichosporium OB3b andMethylocystis sp. strain M, and not three copies as found in M. capsulatus Bath.


Proceedings of the National Academy of Sciences of the United States of America | 2006

An escort mechanism for cycling of export chaperones during flagellum assembly

Lewis D. B. Evans; Graham P. Stafford; Sangita Ahmed; Gillian M. Fraser; Colin E. Hughes

Assembly of the bacterial flagellar filament requires a type III export pathway for ordered delivery of structural subunits from the cytosol to the cell surface. This is facilitated by transient interaction with chaperones that protect subunits and pilot them to dock at the membrane export ATPase complex. We reveal that the essential export protein FliJ has a novel chaperone escort function in the pathway, specifically recruiting unladen chaperones for the minor filament-class subunits of the filament cap and hook-filament junction substructures. FliJ did not recognize unchaperoned subunits or chaperone-subunit complexes, and it associated with the membrane ATPase complex, suggesting a function postdocking. Empty chaperones that were recruited by FliJ in vitro were efficiently captured from FliJ-chaperone complexes by cognate subunits. FliJ and subunit bound to the same region on the target chaperone, but the cognate subunit had a ≈700-fold greater affinity for chaperone than did FliJ. The data show that FliJ recruits chaperones and transfers them to subunits, and indicate that this is driven by competition for a common binding site. This escort mechanism provides a means by which free export chaperones can be cycled after subunit release, establishing a new facet of the secretion process. As FliJ does not escort the chaperone for the major filament subunit, cycling may offer a mechanism for export selectivity and thus promote assembly of the junction and cap substructures required for initiation of flagellin polymerization.


Proteomics | 2010

A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia

Trong Khoa Pham; Sumita Roy; Josselin Noirel; Ian Douglas; Phillip C. Wright; Graham P. Stafford

Tannerella forsythia is a Gram‐negative anaerobe that is one of the most prominent inhabitants of the sub‐gingival plaque biofilm, which is crucial for causing periodontitis. We have used iTRAQ proteomics to identify and quantify alterations in global protein expression of T. forsythia during growth in a biofilm. This is the first proteomic study concentrating on biofilm growth in this key periodontal pathogen, and this study has identified several changes in protein expression. Moreover, we introduce a rigorous statistical method utilising peptide‐level intensities of iTRAQ reporters to determine which proteins are significantly regulated. In total, 348 proteins were identified and quantified with the expression of 44 proteins being significantly altered between biofilm and planktonic cells. We identified proteins from all cell compartments, and highlighted a marked upregulation in the relative abundances of predicted outer membrane proteins in biofilm cells. These included putative transport systems and the T. forsythia S‐layer proteins. These data and our finding that the butyrate production pathway is markedly downregulated in biofilms indicate possible alterations in host interaction capability. We also identified upregulation of putative oxidative stress response proteins, and showed that biofilm cells are 10 to 20 fold more resistant to oxidative stress. This may represent an important adaptation of this organism to prolonged persistence and immune evasion in the oral cavity.


Mucosal Immunology | 2013

A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression

Rajendra P. Settem; Kiyonobu Honma; Takuma Nakajima; Chatchawal Phansopa; Sumita Roy; Graham P. Stafford; Ashu Sharma

Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacteriums proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2–Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases.


Journal of Bacteriology | 2010

A Novel Sialic Acid Utilization and Uptake System in the Periodontal Pathogen Tannerella forsythia

Sumita Roy; C. W. Ian Douglas; Graham P. Stafford

Tannerella forsythia is a key contributor to periodontitis, but little is known of its virulence mechanisms. In this study we have investigated the role of sialic acid in biofilm growth of this periodontal pathogen. Our data show that biofilm growth of T. forsythia is stimulated by sialic acid, glycolyl sialic acid, and sialyllactose, all three of which are common sugar moieties on a range of important host glycoproteins. We have also established that growth on sialyllactose is dependent on the sialidase of T. forsythia since the sialidase inhibitor oseltamivir suppresses growth on sialyllactose. The genome of T. forsythia contains a sialic acid utilization locus, which also encodes a putative inner membrane sialic acid permease (NanT), and we have shown this is functional when it is expressed in Escherichia coli. This genomic locus also contains a putatively novel TonB-dependent outer membrane sialic acid transport system (TF0033-TF0034). In complementation studies using an Escherichia coli strain devoid of its outer membrane sialic acid transporters, the cloning and expression of the TF0033-TF0034 genes enabled an E. coli nanR nanC ompR strain to utilize sialic acid as the sole carbon and energy source. We have thus identified a novel sialic acid uptake system that couples an inner membrane permease with a TonB-dependent outer membrane transporter, and we propose to rename these novel sialic acid uptake genes nanO and nanU, respectively. Taken together, these data indicate that sialic acid is a key growth factor for this little-characterized oral pathogen and may be key to its physiology in vivo.


Infection and Immunity | 2012

Fusobacterium nucleatum and Tannerella forsythia Induce Synergistic Alveolar Bone Loss in a Mouse Periodontitis Model

Rajendra P. Settem; Ahmed Taher El-Hassan; Kiyonobu Honma; Graham P. Stafford; Ashu Sharma

ABSTRACT Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.


Molecular Oral Microbiology | 2012

Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast!

Graham P. Stafford; Sumita Roy; Kiyonobu Honma; Ashu Sharma

Periodontal pathogens, like any other human commensal or pathogenic bacterium, must possess both the ability to acquire the necessary growth factors and the means to adhere to surfaces or reside and survive in their environmental niche. Recent evidence has suggested that sialic acid containing host molecules may provide both of these requirements in vivo for several periodontal pathogens but most notably for the red complex organism Tannerella forsythia. Several other periodontal pathogens also possess sialic acid scavenging enzymes - sialidases, which can also expose adhesive epitopes, but might also act as adhesins in their own right. In addition, recent experimental work coupled with the release of several genome sequences has revealed that periodontal bacteria have a range of sialic acid uptake and utilization systems while others may also use sialic acid as a cloaking device on their surface to mimic host and avoid immune recognition. This review will focus on these systems in a range of periodontal bacteria with a focus on Ta. forsythia.


Microbiology | 2011

Role of sialidase in glycoprotein utilization by Tannerella forsythia

Sumita Roy; Kiyonobu Honma; C.W.I. Douglas; Ashu Sharma; Graham P. Stafford

The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host–pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that T. forsythia can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a nanH mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the nanH mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9-O-acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key in vivo nutrient source for T. forsythia when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy.


Applied and Environmental Microbiology | 2003

The Surface-Associated and Secreted MopE Protein of Methylococcus capsulatus (Bath) Responds to Changes in the Concentration of Copper in the Growth Medium

Odd André Karlsen; Frode S. Berven; Graham P. Stafford; Øivind Larsen; J. Colin Murrell; Harald B. Jensen; Anne Fjellbirkeland

ABSTRACT Expression of surface-associated and secreted protein MopE of the methanotrophic bacterium Methylococcus capsulatus (Bath) in response to the concentration of copper ions in the growth medium was investigated. The level of protein associated with the cells and secreted to the medium changed when the copper concentration in the medium varied and was highest in cells exposed to copper stress.


Biochemical Journal | 2014

Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species.

Chatchawal Phansopa; Sumita Roy; John B. Rafferty; C.W.I. Douglas; Jagroop Pandhal; Phillip C. Wright; David J. Kelly; Graham P. Stafford

Many human-dwelling bacteria acquire sialic acid for growth or surface display. We identified previously a sialic acid utilization operon in Tannerella forsythia that includes a novel outer membrane sialic acid-transport system (NanOU), where NanO (neuraminate outer membrane permease) is a putative TonB-dependent receptor and NanU (extracellular neuraminate uptake protein) is a predicted SusD family protein. Using heterologous complementation of nanOU genes into an Escherichia coli strain devoid of outer membrane sialic acid permeases, we show that the nanOU system from the gut bacterium Bacteroides fragilis is functional and demonstrate its dependence on TonB for function. We also show that nanU is required for maximal function of the transport system and that it is expressed in a sialic acid-responsive manner. We also show its cellular localization to the outer membrane using fractionation and immunofluorescence experiments. Ligand-binding studies revealed high-affinity binding of sialic acid to NanU (Kd ~400 nM) from two Bacteroidetes species as well as binding of a range of sialic acid analogues. Determination of the crystal structure of NanU revealed a monomeric SusD-like structure containing a novel motif characterized by an extended kinked helix that might determine sugar-binding specificity. The results of the present study characterize the first bacterial extracellular sialic acid-binding protein and define a sialic acid-specific PUL (polysaccharide utilization locus).

Collaboration


Dive into the Graham P. Stafford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiyonobu Honma

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumita Roy

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dilly Anumba

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge