Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham Packham is active.

Publication


Featured researches published by Graham Packham.


Blood | 2011

B-cell receptor signaling in chronic lymphocytic leukemia

Freda K. Stevenson; Sergey Krysov; Andrew Davies; Andrew Steele; Graham Packham

The B-cell receptor (BCR) is a key survival molecule for normal B cells and for most B-cell malignancies. Recombinatorial and mutational patterns in the clonal immunoglobulin (Ig) of chronic lymphocytic leukemia (CLL) have revealed 2 major IgMD-expressing subsets and an isotype-switched variant, each developing from distinct B-cell populations. Tracking of conserved stereotypic features of Ig variable regions characteristic of U-CLL indicate circulating naive B cells as the likely cells of origin. In CLL, engagement of the BCR by antigen occurs in vivo, leading to down-regulated expression and to an unanticipated modulation of glycosylation of surface IgM, visible in blood cells, especially in U-CLL. Modulated glycoforms of sIgM are signal competent and could bind to environmental lectins. U-CLL cases express more sIgM and have increased signal competence, linking differential signaling responses to clinical behavior. Mapping of BCR signaling pathways identifies targets for blockade, aimed to deprive CLL cells of survival and proliferative signals. New inhibitors of BCR signaling appear to have clinical activity. In this Perspective, we discuss the functional significance of the BCR in CLL, and we describe strategies to target BCR signaling as an emerging therapeutic approach.


Clinical Cancer Research | 2004

Type I Collagen Promotes the Malignant Phenotype of Pancreatic Ductal Adenocarcinoma

Thomas Armstrong; Graham Packham; Lindsay B. Murphy; Adrian C Bateman; John A. Conti; David R. Fine; C. D. Johnson; R. Christopher Benyon; John P. Iredale

Purpose: The purpose of this study was to determine the role of functional interactions between pancreatic cancer cells and pancreatic stellate cells (PSCs) in the formation of the desmoplastic reaction (DR) in pancreatic cancer and to characterize the effect of type I collagen (the predominant component of the DR) on pancreatic cancer cell phenotype. Experimental Design: PSCs and type I collagen were identified in sections of pancreatic cancer using immunohistochemistry, and their anatomic relationship was studied. Interactions among pancreatic cancer cell lines (MIA PaCa-2, Panc-1, and AsPC-1), primary cultures of human PSCs, and type I collagen were investigated in a series of tissue culture models. Results: In vivo, the DR causes gross distortion of normal pancreas, bringing cancer cells into close contact with numerous PSCs and abundant type I collagen. In tissue culture models of pancreatic cancer, conditioned media from each cell line increased PSC [3H]thymidine incorporation up to 6.3-fold that of controls, and AsPC-1 cells also increased PSC collagen synthesis 1.3-fold. Type I collagen was observed to increase long-term survival of pancreatic cancer cells treated with 5-fluorouracil, by up to 62% in clonogenic assays. This was because type I collagen increased the proliferation of cancer cells ([3H]thymidine incorporation was up to 2.8-fold that of cells cultured on tissue culture plastic) and reduced apoptosis of AsPC-1 cells in response to 5-fluorouracil (by regulating mcl-1). Conclusions: These experiments elucidate a mechanism by which the DR in pancreatic cancer may form and, via the collagen within it, promote the malignant phenotype of pancreatic cancer cells, suggesting significant detriment to the host.


Oncogene | 1998

BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability

Matthew Brimmell; Rezzeline Mendiola; Jonathan Mangion; Graham Packham

Bax suppresses tumorigenesis in a mouse model system and Bax-deficient mice exhibit lymphoid hyperplasia suggesting that BAX functions as a tumour suppressor in human haemopoietic cells. We examined BAX expression in 20 cell lines derived from human haemopoietic malignancies and consistent with a potential tumour suppressor function, identified two cell lines, DG75 (a Burkitt lymphoma cell line) and Jurkat (a T-cell leukaemia line), which lacked detectable BAX expression. Apoptosis of DG75 cells induced by low serum or ionomycin was significantly delayed relative to similar Burkitt lymphoma cell lines with normal BAX levels. Although DG75 and Jurkat cells expressed several BAX RNA species including the prototypical BAX α RNA, the absence of BAX protein was due to single base deletions and additions in a polyguanine tract within the BAX open reading frame. These frameshift mutations result in premature termination of translation and have recently also been identified in some colon cancers with microsatellite instability. Although mismatch repair defects are not considered a common feature of haemopoietic malignancies, DG75 and Jurkat cells had widespread microsatellite instability and did not express detectable levels of MSH2. In Jurkat cells, lack of MSH2 expression was due to a point mutation in exon 13 of MSH2 resulting in premature termination of translation. Our results suggest that a pathway linking mismatch repair defects, BAX tumour suppressor frameshift mutations and resistance to apoptosis may be a key feature of some lymphomas and leukaemias.


Immunology | 2005

Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia

Graham Packham; Freda K. Stevenson

Chronic lymphocytic leukaemia (CLL) is the most common B‐cell malignancy in the Western world and exists as subtypes with very different clinical courses. CLL is generally described as a disease of failed apoptosis. Apoptosis resistance may stem from a combination of microenvironmental survival signals as well as from intrinsic alterations in the apoptotic machinery within the CLL cell. The molecular mechanism involved in controlling apoptosis in CLL is complex and is influenced by many factors, including Bcl‐2 family proteins, which are critical regulators of cell death. Here we review the significance of apoptosis dysregulation in CLL, focusing on the role of Bcl‐2 and related Bcl‐2 family proteins, such as Bax and Mcl‐1. The differential properties of the newly described subsets of CLL are also highlighted.


Oncogene | 2001

Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1

Christine M. Eischen; Graham Packham; John Nip; Brian E. Fee; Scott W. Hiebert; Gerard P. Zambetti; John L. Cleveland

Malignant transformation occurs in cells that overexpress c-Myc or that inappropriately activate E2F-1. Transformation occurs after the selection of cells that have acquired resistance to apoptosis that is triggered by these oncogenes, and a key mediator of this cell death process is the p53 tumor suppressor. In IL-3-dependent immortal 32D.3 myeloid cells the ARF/p53 apoptotic pathway is inactivated, as these cells fail to express ARF. Nonetheless, both c-Myc and E2F-1 overexpression accelerated apoptosis when these cells were deprived of IL-3. Here we report that c-Myc or E2F-1 overexpression suppresses Bcl-2 protein and RNA levels, and that restoration of Bcl-2 protein effectively blocks the accelerated apoptosis that occurs when c-Myc- or E2F-1-overexpressing cells are deprived of IL-3. Blocking p53 activity with mutant p53 did not abrogate E2F-1-induced suppression of Bcl-2. Analysis of immortal myeloid cells engineered to overexpress c-Myc and E2F-1 DNA binding mutants revealed that DNA binding activity of these oncoproteins is required to suppress Bcl-2 expression. These results suggest that the targeting of Bcl-2 family members is an important mechanism of oncogene-induced apoptosis, and that this occurs independent of the ARF/p53 pathway.


Oncogene | 2004

Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage

Jorg Michels; Jason W. O'Neill; Claire L. Dallman; Amalia Mouzakiti; Fay Habens; Matthew Brimmell; Kam Y. J. Zhang; Ruth W. Craig; Eric G. Marcusson; Peter Johnson; Graham Packham

Enforced expression of the antiapoptotic Bcl-2 family protein Mcl-1 promotes lymphomagenesis in the mouse; however, the functional role of Mcl-1 in human B-cell lymphoma remains unclear. We demonstrate that Mcl-1 is widely expressed in malignant B-cells, and high-level expression of Mcl-1 is required for B-lymphoma cell survival, since transfection of Mcl-1-specific antisense oligodeoxynucleotides was sufficient to promote apoptosis in Akata6 lymphoma cells. Mcl-1 was efficiently cleaved by caspases at evolutionarily conserved aspartic acid residues in vitro, and during cisplatin-induced apoptosis in B-lymphoma cell lines and spontaneous apoptosis of primary malignant B-cells. Overexpression of the Mcl-1 cleavage product that accumulated during apoptosis was sufficient to kill cells. Therefore, Mcl-1 is an essential survival molecule for B-lymphoma cells and is cleaved by caspases to a death-promoting molecule during apoptosis. In contrast to Mcl-1, Bcl-2 and Bcl-XL were relatively resistant to caspase cleavage in vitro and in intact cells. Interfering with Mcl-1 function appears to be an effective means of inducing apoptosis in Mcl-1-positive B-cell lymphoma, and the unique sensitivity of Mcl-1 to caspase-mediated cleavage suggests an attractive strategy for converting it to a proapoptotic molecule.


Ejso | 2009

MicroRNAs : Key players in carcinogenesis and novel therapeutic targets

Alex H. Mirnezami; Karen Pickard; Lei Zhang; John Primrose; Graham Packham

MicroRNAs (miRNAs) represent a recently uncovered class of small and endogenous non-coding RNAs. MiRNA function is critical to normal cellular processes such as differentiation and apoptosis, and recent studies have demonstrated that deregulated miRNA expression contributes to the malignant phenotype. The purpose of this review is to summarise these findings in relation to the most common human malignancies, and to analyse the clinical and therapeutic opportunities they provide.


Biology of the Cell | 2012

MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression

Marc D. Bullock; Abdulkadir Emre Sayan; Graham Packham; Alex H. Mirnezami

MicroRNAs (miRNAs) are a class of small highly conserved RNAs that provide widespread expressional control through the translational repression of mRNA. MiRNAs have fundamental roles in the regulation of intracellular processes, and their importance during malignant transformation and metastasis is becoming increasingly well recognized. An important event in the metastatic cascade is epithelial to mesenchymal transition (EMT), a reversible phenotypic switch over, which endows malignant epithelial cells with the capacity to break free from one another and invade the surrounding stroma. Our understanding of EMT has been significantly improved by the characterization of miRNAs that influence the signalling pathways and downstream events that define EMT on a molecular level.


Journal of Biological Chemistry | 2008

Induction of cytosolic calcium flux by CD20 Is dependent upon B cell antigen receptor signaling

Claire A. Walshe; Stephen A. Beers; Ruth R. French; Claude H. T. Chan; Peter Johnson; Graham Packham; Martin J. Glennie; Mark S. Cragg

The anti-CD20 monoclonal antibody (mAb) rituximab is now routinely used for the treatment of non-Hodgkins lymphoma and is being examined in a wide range of other B-cell disorders, such as rheumatoid arthritis. Despite intensive study, the mechanism of action still remains uncertain. In the current study, anti-CD20 mAb-induced calcium signaling was investigated. Previously, we grouped anti-CD20 mAbs into Type I (rituximab-like) and Type II (B1-like) based upon various characteristics such as their ability to induce complement activation and redistribute CD20 into detergent-insoluble membrane domains. Here we show that only Type I mAbs are capable of inducing a calcium flux in B cells and that this is tightly correlated with the expression of the B-cell antigen receptor (BCR). Inhibitor analysis revealed that the signaling cascade employed by CD20 was strikingly similar to that utilized by the BCR, with inhibitors of Syk, Src, and PI3K, but not EGTA, p38, or ERK1/2, completely ablating calcium flux. Furthermore, binding of Type I but not Type II mAbs caused direct association of CD20 with the BCR as measured by FRET and resulted in the phosphorylation of BCR-specific adaptor proteins BLNK and SLP-76. Crucially, variant Ramos cells lacking BCR expression but with unchanged CD20 expression were completely unable to induce calcium flux following ligation of CD20. Collectively, these data indicate that CD20 induces cytosolic calcium flux through its ability to associate with and “hijack” the signaling potential of the BCR.


Biochimica et Biophysica Acta | 2003

BAG-1: a multifunctional regulator of cell growth and survival

Paul A. Townsend; Ramsey I. Cutress; Adam Sharp; Matthew Brimmell; Graham Packham

BAG-1 is multifunctional protein which interacts with a wide range of cellular targets to regulate growth control pathways important for normal and malignant cells, including apoptosis, signaling, proliferation, transcription and cell motility. Of particular relevance to tumour cells, BAG-1 interacts with the anti-apoptotic BCL-2 protein, various nuclear hormone receptors and the 70 kDa heat shock proteins, Hsc70 and Hsp70. Interaction with chaperones may account for many of the pleiotropic effects associated with BAG-1 overexpression. Recent studies have shown that BAG-1 expression is frequently altered in malignant cells, and BAG-1 expression may have clinical value as a prognostic/predictive marker. This review summarises current understanding of molecular mechanisms of BAG-1 expression and function.

Collaboration


Dive into the Graham Packham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Johnson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

A. Ganesan

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Andrew Steele

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon J. Crabb

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Cragg

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge