Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham S. Begg is active.

Publication


Featured researches published by Graham S. Begg.


Annals of Botany | 2012

Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd's purse)

Peter E. Toorop; Rafael Campos Cuerva; Graham S. Begg; Bruna Locardi; G. R. Squire; Pietro P. M. Iannetta

BACKGROUND AND AIMS The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherds purse. METHODS Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy. KEY RESULTS Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds. CONCLUSIONS In shepherds purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.


Environmental Science and Pollution Research | 2009

Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies

Geoffrey R. Squire; Cathy Hawes; Graham S. Begg; Mark W. Young

Background, aim and scopeIn a gradualist approach to the introduction of crop biotechnology, the findings of experimentation at one scale are used to predict the outcome of moving to a higher scale of deployment. Movement through scales had occurred for certain genetically modified herbicide-tolerant (GMHT) crops in the UK as far as large-scale field trials. However, the land area occupied by these trials was still <1% of the area occupied by the respective non-GM crops. Some means is needed to predict the direction and size of the effect of increasing the area of GMHT cropping on ecological variables such as the diversity among species and trophic interactions. Species-accumulation curves are examined here as a method of indicating regional-scale impacts on botanical diversity from multiple field experiments.Materials and methodsData were used from experiments on the effect of (GMHT) crops and non-GM, or conventional, comparators in fields sown with four crop types (beet, maize, spring and winter oilseed rape) at a total of 250 sites in the UK between 2000 and 2003. Indices of biodiversity were measured in a split-field design comparing GMHT with the farmers’ usual weed management. In the original analyses based on the means at site level, effects were detected on the mass of weeds in the three spring crops and the proportion of broadleaf and grass weeds in winter oilseed rape, but not on indices of plant species diversity. To explore the links between site means and total taxa, accumulation curves were constructed based on the number of plant species (a pool of around 250 species in total) and the number of plant functional types (24), inferred from the general life-history characteristics of a species.ResultsSpecies accumulation differed between GMHT and conventional treatments in direction and size, depending on the type of crop and its conventional management. Differences were mostly in the asymptote of the curve, indicative of the maximum number of species found in a treatment, rather than the steepness of the curve. In winter oilseed rape, 8% more species were accumulated in the GMHT treatment, mainly as a result of the encouragement of grass species by the herbicide when applied in the autumn. (Overall, GMHT winter oilseed rape had strong negative effects on both the food web and the potential weed burden by increasing the biomass of grasses and decreasing that of broadleaf weeds.) In maize, 33% more species—a substantial increase—were accumulated in the GMHT than in the conventional, consistent with the latter’s highly suppressive weed management using triazine herbicides. In the spring oilseed rape and beet, fewer species (around 10%) were accumulated in the GMHT than the conventional. The GMHT treatments did not remove or add any functional (life history) types, however. Differences in species accumulation between treatments appeared to be caused by loss or gain of rarer species. The generality of this effect was confirmed by simulations of species accumulation in which the species complement at each of 50 sites was drawn from a regional pool and subjected to reducing treatment at each site. Shifts in the species-accumulation parameters, comparable to those measured, occurred only when a treatment removed the rarer species at each site.DiscussionSpecies accumulation provided a set of simple curve-parameters that captured the net result of numerous local effects of treatments on plant species and, in some instances, the balance between grass and broadleaf types. The direction of effect was not the same in the four crops and depended on the severity of the conventional treatment and on complex interactions between season, herbicide and crop. The accumulation curves gave an indication of potential positive or negative consequences for regional species pools of replacing a conventional practice with GMHT weed management. In this and related studies, a range of indicators, through which diversity was assessed by both species and functional type, and at both site and regional scales, gave more insight into effects of GMHT treatment than provided by any one indicator.ConclusionsSpecies accumulation was shown to discriminate at the regional scale between agronomic treatments that had little effect on species number at the field scale. While a comprehensive assessment of GM cropping needs to include an examination of regional effects, as here, the costs of doing this in all instances would be prohibitive. Simulations of diversity-reducing treatments could provide a theoretical framework for predicting the likely regional effects from in-field plant dynamics.Recommendations and perspectivesAccumulation curves potentially offer a means of linking within-site effects to regional impacts on biodiversity resulting from any change in agricultural practice. To guide empirical measurement, there is a scope to apply a methodology such as individual-based modelling at the field scale to explore the links between agronomic treatments and the relative abundance of plant types. The framework needs to be validated in practice, using species-based and functional taxonomies, the latter defined by measured rather than inferred traits.


PLOS ONE | 2012

Modelling the dynamics of feral alfalfa populations and its management implications.

Muthukumar V. Bagavathiannan; Graham S. Begg; Robert H. Gulden; Rene C. Van Acker

Background Feral populations of cultivated crops can pose challenges to novel trait confinement within agricultural landscapes. Simulation models can be helpful in investigating the underlying dynamics of feral populations and determining suitable management options. Methodology/Principal Findings We developed a stage-structured matrix population model for roadside feral alfalfa populations occurring in southern Manitoba, Canada. The model accounted for the existence of density-dependence and recruitment subsidy in feral populations. We used the model to investigate the long-term dynamics of feral alfalfa populations, and to evaluate the effectiveness of simulated management strategies such as herbicide application and mowing in controlling feral alfalfa. Results suggest that alfalfa populations occurring in roadside habitats can be persistent and less likely to go extinct under current roadverge management scenarios. Management attempts focused on controlling adult plants alone can be counterproductive due to the presence of density-dependent effects. Targeted herbicide application, which can achieve complete control of seedlings, rosettes and established plants, will be an effective strategy, but the seedbank population may contribute to new recruits. In regions where roadside mowing is regularly practiced, devising a timely mowing strategy (early- to mid-August for southern Manitoba), one that can totally prevent seed production, will be a feasible option for managing feral alfalfa populations. Conclusions/Significance Feral alfalfa populations can be persistent in roadside habitats. Timely mowing or regular targeted herbicide application will be effective in managing feral alfalfa populations and limit feral-population-mediated gene flow in alfalfa. However, in the context of novel trait confinement, the extent to which feral alfalfa populations need to be managed will be dictated by the tolerance levels established by specific production systems for specific traits. The modelling framework outlined in this paper could be applied to other perennial herbaceous plants with similar life-history characteristics.


Transgenic Research | 2007

Sources of uncertainty in the quantification of genetically modified oilseed rape contamination in seed lots

Graham S. Begg; D. W. Cullen; Pietro P. M. Iannetta; G. R. Squire

Testing of seed and grain lots is essential in the enforcement of GM labelling legislation and needs reliable procedures for which associated errors have been identified and minimised. In this paper we consider the testing of oilseed rape seed lots obtained from the harvest of a non-GM crop known to be contaminated by volunteer plants from a GM herbicide tolerant variety. The objective was to identify and quantify the error associated with the testing of these lots from the initial sampling to completion of the real-time PCR assay with which the level of GM contamination was quantified.The results showed that, under the controlled conditions of a single laboratory, the error associated with the real-time PCR assay to be negligible in comparison with sampling error, which was exacerbated by heterogeneity in the distribution of GM seeds, most notably at a small scale, i.e. 25 cm3. Sampling error was reduced by one to two thirds on the application of appropriate homogenisation procedures.


Frontiers in Plant Science | 2016

A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation.

Pietro P. M. Iannetta; Mark W. Young; Johann Bachinger; Göran Bergkvist; Jordi Doltra; Rafael J. López-Bellido; Michele Monti; Valentini A. Pappa; Moritz Reckling; Cairistiona F.E. Topp; Robin L. Walker; Robert M. Rees; Christine A. Watson; Euan K. James; Geoffrey R. Squire; Graham S. Begg

The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha−1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.


Pest Management Science | 2015

Stopped in its tracks: how λ-cyhalothrin can break the aphid transmission of a potato potyvirus

Brian Fenton; William T. Salter; G. Malloch; Graham S. Begg; Eric Anderson

BACKGROUND Pyrethroids are one of the most widespread and commonly used classes of insecticide and are used in multiple roles, including protecting potato crops from virus vector aphids. Resistance in some genotypes of a few species is now widespread, but most species remain susceptible. The rate of virus transmission by two genotypes of the peach potato aphid, Myzus persicae, fed on potato virus Y (PVY)-infected leaves of potato treated with the pyrethroid λ-cyhalothrin was evaluated. RESULTS The susceptible genotype, type J, was significantly inhibited from transmitting virus to uninfected seedlings. A genotype containing the M918L super knockdown resistance mutation conferring resistance to pyrethroids, type O, showed no inhibition of transmission. However, when survival of the aphids after exposure was compared, the pyrethroid had not killed the type J aphids. CONCLUSIONS λ-Cyhalothrin in a commercial formulation disrupts PVY transmission by disorienting aphid vectors for a sufficient time for the virus to lose its transmissibility. However, M. persicae genotypes carrying the M918L mutation are not prevented from transmitting.


European Journal of Wildlife Research | 2014

Coexisting small mammals display contrasting strategies for tolerating instability in arable habitat

Amanda Wilson; Brian Fenton; G. Malloch; B. Boag; Steve Hubbard; Graham S. Begg

Small mammal species are abundant and common throughout Europe and often utilise areas that are subject to agricultural land use. Arable farmland is an example of a frequently disturbed habitat, and this study questioned how such disturbance affected the two most common species in the region; one a habitat generalist and one a habitat specialist. We confirmed the prediction that wood mice (Apodemus sylvaticus, a habitat generalist) would make use of a variety of habitats and that bank voles (Myodes glareolus, a habitat specialist) would make greater use of the more stable portions of the study site. We surveyed the study site intensively in order to test whether there was continuity in the spatial arrangement of individuals of both species, given the strategy employed. The spatial arrangement of wood mice varied with season but remained stable for bank voles. We found no association, positive or negative, between the spatial distributions of the two species, suggesting that spatial competitive exclusion did not occur. This work provides further insight into how these small mammal species are affected by agricultural disturbance and predictions can be made about how the species will respond under CAP Reform greening practices.


Journal of Experimental Botany | 2011

How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems

A. Nicholas E. Birch; Graham S. Begg; Geoffrey R. Squire


Annals of Applied Biology | 2009

Deployment of diversity for enhanced crop function

Adrian C. Newton; Graham S. Begg; J.S. Swanston


Oikos | 2005

Individuals as the basic accounting unit in studies of ecosystem function: functional diversity in shepherd's purse, Capsella

Cathy Hawes; Graham S. Begg; G. R. Squire; Pietro P. M. Iannetta

Collaboration


Dive into the Graham S. Begg's collaboration.

Top Co-Authors

Avatar

Pietro P. M. Iannetta

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar

Cathy Hawes

James Hutton Institute

View shared research outputs
Top Co-Authors

Avatar

G. R. Squire

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark W. Young

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Malloch

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jane Wishart

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge