Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham S. Ogg is active.

Publication


Featured researches published by Graham S. Ogg.


Nature | 1998

HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

Veronique M. Braud; David S. J. Allan; Christopher A. O'Callaghan; Kalle Söderström; Annalisa D'Andrea; Graham S. Ogg; Sasha Lazetic; Neil T. Young; John I. Bell; Joseph H. Phillips; Lewis L. Lanier; Andrew J. McMichael

The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules,. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and β2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.


Nature Medicine | 2002

Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections

Victor Appay; P. Rod Dunbar; Margaret F. C. Callan; Paul Klenerman; Geraldine Gillespie; Laura Papagno; Graham S. Ogg; Abigail S. King; Franziska Lechner; Celsa A. Spina; Susan J. Little; Diane V. Havlir; Douglas D. Richman; Norbert H. Gruener; Gerd R. Pape; Anele Waters; Philippa Easterbrook; Mariolina Salio; Vincenzo Cerundolo; Andrew J. McMichael; Sarah Rowland-Jones

The viruses HIV-1, Epstein–Barr virus (EBV), cytomegalovirus (CMV) and hepatitis C virus (HCV) are characterized by the establishment of lifelong infection in the human host, where their replication is thought to be tightly controlled by virus-specific CD8+ T cells. Here we present detailed studies of the differentiation phenotype of these cells, which can be separated into three distinct subsets based on expression of the costimulatory receptors CD28 and CD27. Whereas CD8+ T cells specific for HIV, EBV and HCV exhibit similar characteristics during primary infection, there are significant enrichments at different stages of cellular differentiation in the chronic phase of persistent infection according to the viral specificity, which suggests that distinct memory T-cell populations are established in different virus infections. These findings challenge the current definitions of memory and effector subsets in humans, and suggest that ascribing effector and memory functions to subsets with different differentiation phenotypes is no longer appropriate.


Journal of Experimental Medicine | 2013

A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis.

Maryam Salimi; Jillian L. Barlow; Sean P. Saunders; Luzheng Xue; Danuta Gutowska-Owsiak; Xinwen Wang; Li-Chieh Huang; David Johnson; Seth T. Scanlon; Andrew N. J. McKenzie; Padraic G. Fallon; Graham S. Ogg

Type 2 innate lymphoid cells promote skin inflammation in mice and men, in part by producing IL-5 and IL-13 in response to IL-33


Vaccine | 2000

Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine.

Michael Roy; Mary S. Wu; Lori J. Barr; James T. Fuller; Lynda Tussey; Sue Speller; Jerilyn Culp; Joseph K. Burkholder; William F. Swain; Russell M Dixon; Georg Widera; Rupert Vessey; Abbi King; Graham S. Ogg; Awen Myfanwy Gallimore; Joel R. Haynes; Deborah H. Fuller

A DNA vaccine against the hepatitis B virus (HBV) was evaluated for safety and induction of immune responses in 12 healthy, hepatitis-naïve human volunteers using the needle-free PowderJect system to deliver gold particles coated with DNA directly into cells of the skin. Three groups of four volunteers received three administrations of DNA encoding the surface antigen of HBV at one of the three dose levels (1, 2, or 4 microg). The vaccine was safe and well tolerated, causing only transient and mild to moderate responses at the site of administration. HBV-specific antibody and both CD4+ and CD8+ T cell responses were measured before and after each immunization. All the volunteers developed protective antibody responses of at least 10 mIU/ml. In volunteers who were positive for the HLA class I A2 allele, the vaccine also induced antigen-specific CD8+ T cells that bound HLA-A2/HBsAg(335-343) tetramers, secreted IFN-gamma, and lysed target cells presenting a hepatitis B surface antigen (HBsAg) CTL epitope. Enumeration of HBsAg-specific T cells producing cytokine indicated preferential induction of a Type 1 T helper cell response. These results provide the first demonstration of a DNA vaccine inducing protective antibody titers and both humoral and cell-mediated immune responses in humans.


Gastroenterology | 1999

Direct ex vivo analysis of hepatitis B virus-specific CD8+ T cells associated with the control of infection

Mala K. Maini; Carolina Boni; Graham S. Ogg; Abigail S. King; Stephanie Reignat; Chun Kyon Lee; Juan R. Larrubia; George Webster; Andrew J. McMichael; Carlo Ferrari; Roger Williams; Diego Vergani; Antonio Bertoletti

BACKGROUND & AIMS Cytotoxic T cells have been suggested to be responsible for lysis of hepatitis B virus (HBV)-infected hepatocytes and control of virus infection. The frequency, kinetics, phenotype, and capacity for clonal expansion of circulating HBV-specific CD8 cells were analyzed directly in patients with acute HBV infection to clarify their pathogenetic role. METHODS Three HLA-A2 peptide tetramers able to visualize HBV core, envelope, and polymerase epitope-specific cytotoxic T lymphocytes were synthesized and used for flow cytometric analysis of antigen-specific populations. RESULTS Tetramer-positive cells specific for the core 18-27 epitope were found at a higher frequency than those specific for polymerase 575-583 and envelope 335-343 epitopes in most patients with acute HBV. The number of HBV-specific CD8 cells was highest during the clinically acute stage of infection and decreased after recovery. These cells expressed an activated phenotype and had an impaired capacity to expand in vitro and to display cytolytic activity in response to peptide stimulation. Recovery of these functions was observed when the frequency of specific CD8 cells decreased, coincident with a progressive decrease in their expression of activation markers. CONCLUSIONS This study provides the first ex vivo evidence that the highest frequency of circulating HBV-specific CD8 cells coincides with the clinically acute phase of hepatitis B. These cells exhibit an activated phenotype with limited further proliferative capacity that is restored during recovery.


Immunity | 2014

MHCII-Mediated Dialog between Group 2 Innate Lymphoid Cells and CD4+ T Cells Potentiates Type 2 Immunity and Promotes Parasitic Helminth Expulsion

Christopher J. Oliphant; You Yi Hwang; Jennifer Walker; Maryam Salimi; See Heng Wong; James M. Brewer; Alexandros Englezakis; Jillian L. Barlow; Emily Hams; Seth T. Scanlon; Graham S. Ogg; Padraic G. Fallon; Andrew N. J. McKenzie

Summary Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity.


AIDS | 1999

A recombinant vaccinia virus based ELISPOT assay detects high frequencies of Pol-specific CD8 T cells in HIV-1-positive individuals.

Marie Larsson; Xia Jin; Bharat Ramratnam; Graham S. Ogg; Jose Engelmayer; Marie-Ange Demoitie; Andrew J. McMichael; William I. Cox; Ralph M. Steinman; Douglas F. Nixon; Nina Bhardwaj

OBJECTIVES HIV-1-specific CD8 T cells are considered to be critical in anti-HIV responses. It is important to quantify these cells and to determine their antigenic targets. Here quantification of interferon (IFN)-gamma secreting, virus-specific cells was achieved with an enzyme linked immuno spot (ELISPOT) assay. METHODS Peripheral blood mononuclear cells (PBMC) were infected with recombinant vaccinia vectors expressing HIV-1 genes (gag, pol, env or nef) and added to wells precoated with anti-IFN-gamma monoclonal antibodies. Spot forming cells (SFC), i.e. antigen-specific T cells were detected 24 h later by the addition of biotinylated anti-IFN-gamma monoclonal antibodies, followed by avidin-bound biotinylated horseradish peroxidase. RESULTS In a cohort of 19 patients, of whom 15 were on highly active antiretroviral therapy, 18 had primed T cells directed against one or more HIV-1 antigens (P < 0.0001). Pol-specific T cells routinely dominated the CD8 response with frequencies up to 2000 SFC per 10(6) PBMC. In HLA A*0201-positive patients, the vaccinia vectors detected much higher frequencies of SFC than haplotype-restricted peptides. Elimination of CD8 T cells resulted in > 90% loss of antigen-specific SFC when vaccinia virus was used as a vector. The number of CD8 SFC exceeded the number of memory cells detected in limiting dilution assays by > 1 log10, whereas a correlation was found between the frequency of effector cells detected by both ELISPOT and MHC class I peptide tetramer assays. CONCLUSIONS Vaccinia virus vectors used in ELISPOT assays are useful for determining the frequency and specificity of CD8 T cells for individual HIV-1 gene products. The dominance of cytolytic T lymphocytes (CTL) recognizing pol proteins suggests that this antigen should be considered in vaccine strategies.


The Journal of Allergy and Clinical Immunology | 2014

Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells

Luzheng Xue; Maryam Salimi; Isabel Panse; Jenny Mjösberg; Andrew N. J. McKenzie; Hergen Spits; Paul Klenerman; Graham S. Ogg

Background Activation of the group 2 innate lymphoid cell (ILC2) population leads to production of the classical type 2 cytokines, thus promoting type 2 immunity. Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2), is expressed by human ILC2s. However, the function of CRTH2 in these cells is unclear. Objectives We sought to determine the role of PGD2 and CRTH2 in human ILC2s and compare it with that of the established ILC2 activators IL-25 and IL-33. Methods The effects of PGD2, IL-25, and IL-33 on the cell migration, cytokine production, gene regulation, and receptor expression of ILC2s were measured with chemotaxis, ELISA, Luminex, flow cytometry, quantitative RT-PCR, and QuantiGene assays. The effects of PGD2 under physiologic conditions were evaluated by using the supernatant from activated mast cells. Results PGD2 binding to CRTH2 induced ILC2 migration and production of type 2 cytokines and many other cytokines. ILC2 activation through CRTH2 also upregulated the expression of IL-33 and IL-25 receptor subunits (ST2 and IL-17RA). The effects of PGD2 on ILC2s could be mimicked by the supernatant from activated human mast cells and inhibited by a CRTH2 antagonist. Conclusions PGD2 is an important and potent activator of ILC2s through CRTH2 mediating strong proallergic inflammatory responses. Through IgE-mediated mast cell degranulation, these innate cells can also contribute to adaptive type 2 immunity; thus CRTH2 bridges the innate and adaptive pathways in human ILC2s.


Journal of Experimental Medicine | 2002

Escaping High Viral Load Exhaustion: CD8 Cells with Altered Tetramer Binding in Chronic Hepatitis B Virus Infection

Stephanie Reignat; George Webster; David A. Brown; Graham S. Ogg; Abigail S. King; Suranjith L. Seneviratne; Geoff Dusheiko; Roger Williams; Mala K. Maini; Antonio Bertoletti

Deletion, anergy, and a spectrum of functional impairments can affect virus-specific CD8 cells in chronic viral infections. Here we characterize a low frequency population of CD8 cells present in chronic hepatitis B virus (HBV) infection which survive in the face of a high quantity of viral antigen. Although they do not appear to exert immunological pressure in vivo, these CD8 cells are not classically “tolerant” since they proliferate, lyse, and produce antiviral cytokines in vitro. They are characterized by altered HLA/peptide tetramer reactivity, which is not explained by TCR down-regulation or reduced functional avidity and which can be reversed with repetitive stimulation. CD8 cells with altered tetramer binding appear to have a specificity restricted to envelope antigen and not to other HBV antigens, suggesting that mechanisms of CD8 cell dysfunction are differentially regulated according to the antigenic form and presentation of individual viral antigens.


European Journal of Immunology | 2001

High viral burden in the presence of major HIV-specific CD8(+) T cell expansions: evidence for impaired CTL effector function.

Stefan Kostense; Graham S. Ogg; Erik H. Manting; Geraldine Gillespie; Jeanine Joling; Kristin Vandenberghe; Eveline Z. Veenhof; Debbie van Baarle; Suzanne Jurriaans; Michèl R. Klein; Frank Miedema

To investigate the effect of HIV‐specific CD8+ T cells on viral plasma load and disease progression, we enumerated HLA‐A2‐, B8‐ and B57‐restricted CD8+ T cells directed against several HIV epitopes in a total of 54 patients by the use of tetrameric HLA‐peptide complexes. In patients with high CD4+ T cell numbers, HIV‐specific tetramer+ cells inversely correlated with viral load. Patients with CD4+ T cell numbers below 400/μ l blood, however, carried high viral load despite frequently having high tetramer+ T cell numbers. This lack of correlation between viral load and tetramer+ cells did not result from viral escape variants, as in only 4 of 13 patients, low frequencies of viruses with mutated epitopes were observed. In 15 patients we measured CD8+ T cell antigen responsiveness to HIV peptide stimulation in vitro. FACS analyses showed differential IFN‐γ production of the tetramer+ cells, and this proportion of IFN‐γ‐producing tetramer+ cells correlated with AIDS‐free survival and with T cell maturation to the CD27– effector stage. These data show that most HIV‐infected patients have sustained HIV‐specific T cell expansions but many of these cells seem not to be functional, leaving the patient with high numbers of non‐functional virus‐specific CD8+ T cells in the face of high viral burden.

Collaboration


Dive into the Graham S. Ogg's collaboration.

Top Co-Authors

Avatar

Gathsaurie Neelika Malavige

University of Sri Jayewardenepura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laksiri Gomes

University of Sri Jayewardenepura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge