Graham S. Taylor
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graham S. Taylor.
Journal of Experimental Medicine | 2004
Steven P. Lee; Jill M. Brooks; Hatim Al-Jarrah; Wendy A. Thomas; Tracey A. Haigh; Graham S. Taylor; Sibille Humme; Aloys Schepers; Wolfgang Hammerschmidt; John L. Yates; Alan B. Rickinson; Neil Blake
The Epstein-Barr virus (EBV) nuclear antigen (EBNA)1 contains a glycine-alanine repeat (GAr) domain that appears to protect the antigen from proteasomal breakdown and, as measured in cytotoxicity assays, from major histocompatibility complex (MHC) class I–restricted presentation to CD8+ T cells. This led to the concept of EBNA1 as an immunologically silent protein that although unique in being expressed in all EBV malignancies, could not be exploited as a CD8 target. Here, using CD8+ T cell clones to native EBNA1 epitopes upstream and downstream of the GAr domain and assaying recognition by interferon γ release, we show that the EBNA1 naturally expressed in EBV-transformed lymphoblastoid cell lines (LCLs) is in fact presented to CD8+ T cells via a proteasome/peptide transporter–dependent pathway. Furthermore, LCL recognition by such CD8+ T cells, although slightly lower than seen with paired lines expressing a GAr-deleted EBNA1 protein, leads to strong and specific inhibition of LCL outgrowth in vitro. Endogenously expressed EBNA1 is therefore accessible to the MHC class I pathway despite GAr-mediated stabilization of the mature protein. We infer that EBNA1-specific CD8+ T cells do play a role in control of EBV infection in vivo and might be exploitable in the control of EBV+ malignancies.
Journal of Virology | 2005
Heather M. Long; Tracey A. Haigh; Nancy H. Gudgeon; Ann M. Leen; Chi Tsang; Jill M. Brooks; Elise Landais; Elisabeth Houssaint; Steven P. Lee; Alan B. Rickinson; Graham S. Taylor
ABSTRACT There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4+ T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4+ T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4+ epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4+ T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4+ clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4+ T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells.
Annual Review of Immunology | 2015
Graham S. Taylor; Heather M. Long; Jill M. Brooks; Alan B. Rickinson; Andrew D. Hislop
Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.
Journal of Virology | 2004
Graham S. Taylor; Tracey A. Haigh; Nancy H. Gudgeon; R. J. Phelps; Steven P. Lee; Neil Steven; Alan B. Rickinson
ABSTRACT Virus-associated malignancies are potential targets for immunotherapeutic vaccines aiming to stimulate T-cell responses against viral antigens expressed in tumor cells. Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma, a high-incidence tumor in southern China, expresses a limited set of EBV proteins, including the nuclear antigen EBNA1, an abundant source of HLA class II-restricted CD4+ T-cell epitopes, and the latent membrane protein LMP2, a source of subdominant CD8+ T-cell epitopes presented by HLA class I alleles common in the Chinese population. We used appropriately modified gene sequences from a Chinese EBV strain to generate a modified vaccinia virus Ankara recombinant, MVA-EL, expressing the CD4 epitope-rich C-terminal domain of EBNA1 fused to full-length LMP2. The endogenously expressed fusion protein EL is efficiently processed via the HLA class I pathway, and MVA-EL-infected dendritic cells selectively reactivate LMP2-specific CD8+ memory T-cell responses from immune donors in vitro. Surprisingly, endogenously expressed EL also directly accesses the HLA class II presentation pathway and, unlike endogenously expressed EBNA1 itself, efficiently reactivates CD4+ memory T-cell responses in vitro. This unscheduled access to the HLA class II pathway is coincident with EL-mediated redirection of the EBNA1 domain from its native nuclear location to dense cytoplasmic patches. Given its immunogenicity to both CD4+ and CD8+ T cells, MVA-EL has potential as a therapeutic vaccine in the context of nasopharyngeal carcinoma.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Carol S. Leung; Tracey A. Haigh; Laura K. Mackay; Alan B. Rickinson; Graham S. Taylor
Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein–Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4+ T cell epitopes. Using CD4+ T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1’s nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.
Current Opinion in Immunology | 2011
Heather M. Long; Graham S. Taylor; Alan B. Rickinson
Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus widespread in the human population and normally contained as an asymptomatic infection by T cell surveillance, nevertheless causes infectious mononucleosis and is strongly linked to several types of human cancer. Here we describe new findings on the range of cellular immune responses induced by EBV infection, on viral strategies to evade those responses and on the links between HLA gene loci and EBV-induced disease. The success of adoptive T cell therapy for EBV-driven post-transplant lymphoproliferative disease is stimulating efforts to target other EBV-associated tumours by immunotherapeutic means, and has reawakened interest in the ultimate intervention strategy, a prophylactic EBV vaccine.
Cancer Research | 2013
Edwin P. Hui; Graham S. Taylor; Hui Jia; Brigette Ma; Stephen L. Chan; Rosalie Ho; Wai Lap Wong; Steven E. Wilson; Benjamin F. Johnson; Ceri Edwards; Deborah D. Stocken; Alan B. Rickinson; Neil Steven; Anthony T.C. Chan
Epstein-Barr virus (EBV) is associated with several malignancies including nasopharyngeal carcinoma, a high incidence tumor in Chinese populations, in which tumor cells express the two EBV antigens EB nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2). Here, we report the phase I trial of a recombinant vaccinia virus, MVA-EL, which encodes an EBNA1/LMP2 fusion protein designed to boost T-cell immunity to these antigens. The vaccine was delivered to Hong Kong patients with nasopharyngeal carcinoma to determine a safe and immunogenic dose. The patients, all in remission more than 12 weeks after primary therapy, received three intradermal MVA-EL vaccinations at three weekly intervals, using five escalating dose levels between 5 × 10(7) and 5 × 10(8) plaque-forming unit (pfu). Blood samples were taken during prescreening, immediately before vaccination, one week afterward and at intervals up to one year later. Immunogenicity was tested by IFN-γ ELIspot assays using complete EBNA1 and LMP2 15-mer peptide mixes and known epitope peptides relevant to patient MHC type. Eighteen patients were treated, three per dose level one to four and six at the highest dose, without dose-limiting toxicity. T-cell responses to one or both vaccine antigens were increased in 15 of 18 patients and, in many cases, were mapped to known CD4 and CD8 epitopes in EBNA1 and/or LMP2. The range of these responses suggested a direct relationship with vaccine dose, with all six patients at the highest dose level giving strong EBNA1/LMP2 responses. We concluded that MVA-EL is both safe and immunogenic, allowing the highest dose to be forwarded to phase II studies examining clinical benefit.
Journal of Immunology | 2005
Karin Straathof; Ann M. Leen; Elizabeth Buza; Graham S. Taylor; M. Helen Huls; Helen E. Heslop; Cliona M. Rooney; Catherine M. Bollard
Viral proteins expressed by EBV-associated tumors provide target Ags for immunotherapy. Adoptive T cell therapy has proven effective for posttransplant EBV-associated lymphoma in which all EBV latent Ags are expressed (type III latency). Application of immunotherapeutic strategies to tumors such as nasopharyngeal carcinoma and Hodgkin’s lymphoma that have a restricted pattern of EBV Ag expression (type II latency) is under investigation. Potential EBV Ag targets for T cell therapy expressed by these tumors include latent membrane proteins (LMP) 1 and 2. A broad panel of epitopes must be identified from these target Ags to optimize vaccination strategies and facilitate monitoring of tumor-specific T cell populations after immunotherapeutic interventions. To date, LMP2 epitopes have been identified for only a limited number of HLA alleles. Using a peptide library spanning the entire LMP2 sequence, 25 CTL lines from patients with EBV-positive malignancies expressing type II latency were screened for the presence of LMP2-specific T cell populations. In 21 of 25 lines, T cell responses against one to five LMP2 epitopes were identified. These included responses to previously described epitopes as well as to newly identified HLA-A*0206-, A*0204/17-, A29-, A68-, B*1402-, B27-, B*3501-, B53-, and HLA-DR-restricted epitopes. Seven of the nine newly identified epitopes were antigenically conserved among virus isolates from nasopharyngeal carcinoma tumors. These new LMP2 epitopes broaden the diversity of HLA alleles with available epitopes, and, in particular, those epitopes conserved between EBV strains provide valuable tools for immunotherapy and immune monitoring.
Journal of Immunology | 2006
Graham S. Taylor; Heather M. Long; Tracey A. Haigh; Martin Rossel Larsen; Jill M. Brooks; Alan B. Rickinson
The CD4+ T cell response to EBV may have an important role in controlling virus-driven B lymphoproliferation because CD4+ T cell clones to a subset of EBV nuclear Ag (EBNA) epitopes can directly recognize virus-transformed lymphoblastoid cell lines (LCLs) in vitro and inhibit their growth. In this study, we used a panel of EBNA1, 2, 3A, and 3C-specific CD4+ T cell clones to study the route whereby endogenously expressed EBNAs access the HLA class II-presentation pathway. Two sets of results spoke against a direct route of intracellular access. First, none of the clones recognized cognate Ag overexpressed in cells from vaccinia vectors but did recognize Ag fused to an endo/lysosomal targeting sequence. Second, focusing on clones with the strongest LCL recognition that were specific for EBNA2- and EBNA3C-derived epitopes LCL recognition was unaffected by inhibiting autophagy, a postulated route for intracellular Ag delivery into the HLA class II pathway in LCL cells. Subsequently, using these same epitope-specific clones, we found that Ag-negative cells with the appropriate HLA-restricting allele could be efficiently sensitized to CD4+ T cell recognition by cocultivation with Ag-positive donor lines or by exposure to donor line-conditioned culture medium. Sensitization was mediated by a high m.w. antigenic species and required active Ag processing by recipient cells. We infer that intercellular Ag transfer plays a major role in the presentation of EBNA-derived CD4 epitopes by latently infected target cells.
Journal of Immunology | 2008
Tracey A. Haigh; Xiaorong Lin; Hui Jia; Edwin P. Hui; Anthony T.C. Chan; Alan B. Rickinson; Graham S. Taylor
The EBV-latent membrane proteins (LMPs) 1 and 2 are among only three viral proteins expressed in EBV-associated Hodgkin’s lymphoma and nasopharyngeal carcinoma. Since these tumors are HLA class I and class II-positive, the LMPs could serve as both CD8+ and CD4+ T cell targets. In contrast to CD8 responses, very little is known about CD4 responses to LMPs. In this study, we describe CD4+ T cell clones defining four LMP1- and three LMP2-derived peptide epitopes and their restricting alleles. All clones produced Th1-like cytokines in response to peptide and most killed peptide-loaded target cells by perforin-mediated lysis. Although clones to different epitopes showed different functional avidities in peptide titration assays, avidity per se was a poor predictor of the ability to recognize naturally infected B lymphoblastoid cell lines (LCLs) expressing LMPs at physiologic levels. Some epitopes, particularly within LMP1, consistently mediated strong LCL recognition detectable in cytokine release, cytotoxicity, and outgrowth inhibition assays. Using cyclosporin A to selectively block cytokine release, we found that CD4+ T cell cytotoxicity is the key effector of LCL outgrowth control. We therefore infer that cytotoxic CD4+ T cells to a subset of LMP epitopes could have therapeutic potential against LMP-expressing tumors.