Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham Whale is active.

Publication


Featured researches published by Graham Whale.


Aquatic Toxicology | 2010

The Fish Embryo Toxicity Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research

Michelle R. Embry; Scott E. Belanger; Thomas Braunbeck; Malyka Galay-Burgos; Marlies Halder; David E. Hinton; Marc Léonard; Adam Lillicrap; Teresa J. Norberg-King; Graham Whale

Animal alternatives research has historically focused on human safety assessments and has only recently been extended to environmental testing. This is particularly for those assays that involve the use of fish. A number of alternatives are being pursued by the scientific community including the fish embryo toxicity (FET) test, a proposed replacement alternative to the acute fish test. Discussion of the FET methodology and its application in environmental assessments on a global level was needed. With this emerging issue in mind, the ILSI Health and Environmental Sciences Institute (HESI) and the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) held an International Workshop on the Application of the Fish Embryo Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research in March, 2008. The workshop included approximately 40 scientists and regulators representing government, industry, academia, and non-governmental organizations from North America, Europe, and Asia. The goal was to review the state of the science regarding the investigation of fish embryonic tests, pain and distress in fish, emerging approaches utilizing fish embryos, and the use of fish embryo toxicity test data in various types of environmental assessments (e.g., hazard, risk, effluent, and classification and labeling of chemicals). Some specific key outcomes included agreement that risk assessors need fish data for decision-making, that extending the FET to include eluethereombryos was desirable, that relevant endpoints are being used, and that additional endpoints could facilitate additional uses beyond acute toxicity testing. The FET was, however, not yet considered validated sensu OECD. An important action step will be to provide guidance on how all fish tests can be used to assess chemical hazard and to harmonize the diverse terminology used in test guidelines adopted over the past decades. Use of the FET in context of effluent assessments was considered and it is not known if fish embryos are sufficiently sensitive for consideration as a surrogate to the sub-chronic 7-day larval fish growth and survival test used in the United States, for example. Addressing these needs by via workshops, research, and additional data reviews were identified for future action by scientists and regulators.


Regulatory Toxicology and Pharmacology | 2013

A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment

Stefan Scholz; Erika Sela; Ludek Blaha; Thomas Braunbeck; Malyka Galay-Burgos; Mauricio García-Franco; Joaquin Guinea; Nils Klüver; Kristin Schirmer; Katrin Tanneberger; Marysia Tobor-Kapłon; Hilda Witters; Scott E. Belanger; Emilio Benfenati; Stuart Creton; Mark T. D. Cronin; Rik I. L. Eggen; Michelle R. Embry; Drew R. Ekman; Anne Gourmelon; Marlies Halder; Barry Hardy; Thomas Hartung; Bruno Hubesch; Dirk Jungmann; Mark A. Lampi; Lucy E. J. Lee; Marc Léonard; Eberhard Küster; Adam Lillicrap

Tests with vertebrates are an integral part of environmental hazard identification and risk assessment of chemicals, plant protection products, pharmaceuticals, biocides, feed additives and effluents. These tests raise ethical and economic concerns and are considered as inappropriate for assessing all of the substances and effluents that require regulatory testing. Hence, there is a strong demand for replacement, reduction and refinement strategies and methods. However, until now alternative approaches have only rarely been used in regulatory settings. This review provides an overview on current regulations of chemicals and the requirements for animal tests in environmental hazard and risk assessment. It aims to highlight the potential areas for alternative approaches in environmental hazard identification and risk assessment. Perspectives and limitations of alternative approaches to animal tests using vertebrates in environmental toxicology, i.e. mainly fish and amphibians, are discussed. Free access to existing (proprietary) animal test data, availability of validated alternative methods and a practical implementation of conceptual approaches such as the Adverse Outcome Pathways and Integrated Testing Strategies were identified as major requirements towards the successful development and implementation of alternative approaches. Although this article focusses on European regulations, its considerations and conclusions are of global relevance.


Integrated Environmental Assessment and Management | 2010

Regulatory aspects on the use of fish embryos in environmental toxicology

Marlies Halder; Marc Léonard; Taisen Iguchi; James T. Oris; Kathy Ryder; Scott E. Belanger; Thomas Braunbeck; Michelle R. Embry; Graham Whale; Teresa J. Norberg-King; Adam Lillicrap

Animal alternative tests are gaining serious consideration in an array of environmental sciences, particularly as they relate to sound management of chemicals and wastewater discharges. The ILSI Health and Environmental Sciences Institute and the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) held an International Workshop on the Application of the Fish Embryo Test in March, 2008. This relatively young discipline is following advances in animal alternatives for human safety sciences, and it is advisable to develop a broad comparison of how animal alternative tests involving fish are viewed in a regulatory context over a wide array of authorities or advising bodies. These include OECD, Western Europe, North America, and Japan. This paper summarizes representative practices from these regions. Presently, the global regulatory environment has varying stances regarding the protection of fish for use as an experimental animal. Such differences have a long-term potential to lead to a lack of harmony in approaches to fish toxicity testing, especially for chemicals in commerce across multiple geographic regions. Implementation of alternative methods and approaches will be most successful if accepted globally, including methods of fish toxicity testing. An important area for harmonization would be in the interpretation of protected and nonprotected life stages of fish. Use of fish embryos represent a promising alternative and allow bridging to more technically challenging alternatives with longer prospective timelines, including cell-based assays, ecotoxicogenomics, and QSARs.


Chemosphere | 1994

A guideline supplement for determining the aquatic toxicity of poorly water-soluble complex mixtures using water-accommodated fractions

A.E. Girling; Graham Whale; D.M.M. Adema

Abstract Regulatory guideline methods for aquatic toxicity testing have generally been developed for pure chemicals tested at concentrations below the limit of their water solubility where exposure concentration can be quantified in terms of a concentration in solution. The same methods may also be applied to testing products which are complex chemical mixtures at product: water ratios that do not exceed the water-solubility of any of the product components. A different approach is required for testing complex mixtures at ratios which exceed water-solubilities of some of the components.


Toxicological Sciences | 2010

An information-rich alternative, chemicals testing strategy using a high definition toxicogenomics and zebrafish (Danio rerio) embryos

Ashley D. Sawle; Ernst Wit; Graham Whale; Andrew R. Cossins

Large-scale toxicogenomic screening approaches offer great promise for generating a bias-free system-wide view of toxicological effects and modes-of-action of chemicals and ecotoxicants. However, early applications of microarray technology have identified relatively small groups of responding genes with which to define new targets for analysis by conventional means. We have trialled a more intensive approach to the design and interpretation of array experiments incorporating a balanced interwoven ANOVA design with higher levels of biological replication, a more thorough analysis of errors and false discovery rates, and an analysis of response patterns using gene network models. Zebrafish embryos were exposed from 1.5 h post-fertilization for 72 h to ecotoxicants representing different classes--2,4-dichlorophenol, 3,4-dichloroaniline, pentachlorophenol, and cadmium chloride--at low concentrations producing a developmental disturbance to 10% of embryos and half of this dose. Extracted whole embryo RNA was then analyzed on microarrays. Analysis revealed responses of 3000-5000 genes, which is 10-1000 times greater than previously reported, with significance at lower levels of fold change. Some gene responses were common to multiple toxicants, and others were restricted to just one or two toxicants. The gene expression profiles for the different toxicants were distinctive, and analysis using network-based models provided a high level of detail of affected processes, some of which were novel. This approach provides a more highly refined view of toxic effects, from which meaningful patterns of response can be discerned and related to functional deficits and from which more reliable indicators of toxicological effect can be predicted.


Ecotoxicology | 2004

Toxicity Reduction Evaluation, Toxicity Identification Evaluation and Toxicity Tracking in Direct Toxicity Assessment

Matt Hutchings; Ian Johnson; Elaine Hayes; Andrew E. Girling; John E. Thain; Kevin V. Thomas; Rachel Benstead; Graham Whale; Joy Wordon; Ruth Maddox; Phillip Chown

Toxicity reduction evaluations (TREs) in the River Esk and Lower Tees Estuary were based on the approach described by USEPA, but adapted to tackle the specific problems of the two sites. A combination of toxicity tracking and toxicity identification evaluation (TIE) was used at both locations to enhance the understanding of source and type of toxicants present. The assessment of toxicity at Langholm focussed on pesticides present in the sewerage network. The TIE programme indicated that the most likely toxic agents within the effluent were the organophosphate pesticides diazinon and to lesser extent propetamphos, although these did not account for all of the observed toxicity. The exact source of these toxicants was not clear although toxicity tracking identified two potential candidates. The TRE undertaken on the discharge to the lower Tees utilised high-throughput methods with standard test organisms to generate toxicity information throughout a complex sewerage network. The toxicity tracking information was used in conjunction with TIEs to identify a number of key sources of toxicity. Substantial toxicity was associated with a currently untreated industrial effluent. Chemical analysis and TIE highlighted cyanide as the likely toxicant in this effluent and its possible significance in the final discharge.


Integrated Environmental Assessment and Management | 2016

Advancing the 3Rs in regulatory ecotoxicology: A pragmatic cross‐sector approach

Natalie Burden; Rachel Benstead; Mark Clook; Ian Doyle; Peter Edwards; Samuel K. Maynard; Kathryn Ryder; Dave Sheahan; Graham Whale; Roger van Egmond; James R. Wheeler; Thomas H. Hutchinson

The ecotoxicity testing of chemicals for prospective environmental safety assessment is an area in which a high number of vertebrates are used across a variety of industry sectors. Refining, reducing, and replacing the use of animals such as fish, birds, and amphibians for this purpose addresses the ethical concerns and the increasing legislative requirements to consider alternative test methods. Members of the UK-based National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) Ecotoxicology Working Group, consisting of representatives from academia, government organizations, and industry, have worked together over the past 6 y to provide evidence bases to support and advance the application of the 3Rs in regulatory ecotoxicity testing. The group recently held a workshop to identify the areas of testing, demands, and drivers that will have an impact on the future of animal use in regulatory ecotoxicology. As a result of these discussions, we have developed a pragmatic approach to prioritize and realistically address key opportunity areas, to enable progress toward the vision of a reduced reliance on the use of animals in this area of testing. This paper summarizes the findings of this exercise and proposes a pragmatic strategy toward our key long-term goals-the incorporation of reliable alternatives to whole-organism testing into regulations and guidance, and a culture shift toward reduced reliance on vertebrate toxicity testing in routine environmental safety assessment. Integr Environ Assess Manag 2016;12:417-421.


Environmental Toxicology and Chemistry | 2018

Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment

Dick de Zwart; William J. Adams; Malyka Galay Burgos; Juliane Hollender; Marion Junghans; Graham Merrington; Derek C. G. Muir; Thomas F. Parkerton; Karel A.C. De Schamphelaere; Graham Whale; Richard J. Williams

Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes, from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent, or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the event mean concentration concept, with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modeling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed of the role of nonchemical stressors in such highly modified urban water bodies. Environ Toxicol Chem 2018;37:703-714.


Toxicology in Vitro | 2017

Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds

Peter I. Racz; Marjolein Wildwater; Martijn Rooseboom; Engelien Kerkhof; Raymond Pieters; Elena Santidrian Yebra-Pimentel; Ron P. Dirks; Herman P. Spaink; Chantal Smulders; Graham Whale

To enable selection of novel chemicals for new processes, there is a recognized need for alternative toxicity screening assays to assess potential risks to man and the environment. For human health hazard assessment these screening assays need to be translational to humans, have high throughput capability, and from an animal welfare perspective be harmonized with the principles of the 3Rs (Reduction, Refinement, Replacement). In the area of toxicology a number of cell culture systems are available but while these have some predictive value, they are not ideally suited for the prediction of developmental and reproductive toxicology (DART). This is because they often lack biotransformation capacity, multicellular or multi- organ complexity, for example, the hypothalamus pituitary gonad (HPG) axis and the complete life cycle of whole organisms. To try to overcome some of these limitations in this study, we have used Caenorhabditis elegans (nematode) and Danio rerio embryos (zebrafish) as alternative assays for DART hazard assessment of some candidate chemicals being considered for a new commercial application. Nematodes exposed to Piperazine and one of the analogs tested showed a slight delay in development compared to untreated animals but only at high concentrations and with Piperazine as the most sensitive compound. Total brood size of the nematodes was also reduced primarily by Piperazine and one of the analogs. In zebrafish Piperazine and analogs showed developmental delays. Malformations and mortality in individual fish were also scored. Significant malformations were most sensitively identified with Piperazine, significant mortality was only observed in Piperazine and only at the higest dose. Thus, Piperazine seemed the most toxic compound for both nematodes and zebrafish. The results of the nematode and zebrafish studies were in alignment with data obtained from conventional mammalian toxicity studies indicating that these have potential as developmental toxicity screening systems. The results of these studies also provided reassurance that none of the Piperazines tested are likely to have any significant developmental and/or reproductive toxicity issues to humans when used in their commercial applications.


Science of The Total Environment | 2017

Is an ecosystem services-based approach developed for setting specific protection goals for plant protection products applicable to other chemicals?

Lorraine Maltby; Mathew Jackson; Graham Whale; A. Ross Brown; Mick Hamer; Andreas Solga; Patrick Kabouw; Richard Woods; Stuart Marshall

Clearly defined protection goals specifying what to protect, where and when, are required for designing scientifically sound risk assessments and effective risk management of chemicals. Environmental protection goals specified in EU legislation are defined in general terms, resulting in uncertainty in how to achieve them. In 2010, the European Food Safety Authority (EFSA) published a framework to identify more specific protection goals based on ecosystem services potentially affected by plant protection products. But how applicable is this framework to chemicals with different emission scenarios and receptor ecosystems? Four case studies used to address this question were: (i) oil refinery waste water exposure in estuarine environments; (ii) oil dispersant exposure in aquatic environments; (iii) down the drain chemicals exposure in a wide range of ecosystems (terrestrial and aquatic); (iv) persistent organic pollutant exposure in remote (pristine) Arctic environments. A four-step process was followed to identify ecosystems and services potentially impacted by chemical emissions and to define specific protection goals. Case studies demonstrated that, in principle, the ecosystem services concept and the EFSA framework can be applied to derive specific protection goals for a broad range of chemical exposure scenarios. By identifying key habitats and ecosystem services of concern, the approach offers the potential for greater spatial and temporal resolution, together with increased environmental relevance, in chemical risk assessments. With modifications including improved clarity on terminology/definitions and further development/refinement of the key concepts, we believe the principles of the EFSA framework could provide a methodical approach to the identification and prioritization of ecosystems, ecosystem services and the service providing units that are most at risk from chemical exposure.

Collaboration


Dive into the Graham Whale's collaboration.

Top Co-Authors

Avatar

Michelle R. Embry

International Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Lillicrap

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Teresa J. Norberg-King

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge