Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham Wilkes is active.

Publication


Featured researches published by Graham Wilkes.


Water Research | 2009

Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape

Graham Wilkes; Thomas A. Edge; Victor P. J. Gannon; Cassandra C. Jokinen; Emilie Lyautey; Diane Medeiros; Norman F. Neumann; Norma J. Ruecker; Edward Topp; David R. Lapen

The South Nation River basin in eastern Ontario, Canada is characterized by mixed agriculture. Over 1600 water samples were collected on a bi-weekly basis from up to 24 discrete sampling sites on river tributaries of varying stream order within the river basin between 2004 and 2006. Water samples were analyzed for: densities of indicator bacteria (Escherichia coli, Clostridium perfringens, enterococci, total and fecal coliforms), the presence of pathogenic bacteria (Listeria monocytogenes, E. coli O157:H7, Salmonella spp., Campylobacter spp.), and densities of parasite Giardia cysts and Cryptosporidium oocysts. Relationships between indicator bacteria, pathogens, and parasite oocysts/cysts were overall weak, seasonally dependent, site specific, but primarily positive. However, L. monocytogenes was inversely related with indicator bacteria densities. Campylobacter, Salmonella, Giardia cysts and Cryptosporidium oocysts were most frequently detected in the fall. E. coli O157:H7 was detected at a very low frequency. Exploratory decision tree analyses found overall that E. coli densities were the most utilitarian classifiers of parasite/pathogen presence and absence, followed closely by fecal coliforms, and to a lesser extent enterococci and total coliforms. Indicator bacteria densities that classified pathogen presence and absence groupings, were all below 100 CFU per 100 mL(-1). Microorganism relationships with rainfall indices and tributary discharge variables were globally weak to modest, and generally inconsistent among season, site and microorganism. But, overall rainfall and discharge were primarily positively associated with indicator bacteria densities and pathogen detection. Instances where a pathogen was detected in the absence of a detectable bacterial indicator were extremely infrequent; thus, the fecal indicators were conservative surrogates for a variety of pathogenic microorganisms in this agricultural setting. The results from this study indicate that no one indicator or simple hydrological index is entirely suitable for all environmental systems and pathogens/parasites, even within a common geographic setting. These results place more firmly into context that robust prediction and/or indicator utility will require a more firm understanding of microorganism distribution in the landscape, the nature of host sources, and transport/environmental fate affinities among pathogens and indicators.


Water Research | 2011

Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds

Graham Wilkes; Thomas A. Edge; Victor P. J. Gannon; Cassandra C. Jokinen; Emilie Lyautey; Norman F. Neumann; Norma J. Ruecker; Andrew Scott; Mark Sunohara; E. Topp; David R. Lapen

Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥ 2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼ 14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼ 27 mm (62 percentile). During higher water temperatures (>∼ 14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥ 2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥ 2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region.


Applied and Environmental Microbiology | 2007

Distribution and Characteristics of Listeria monocytogenes Isolates from Surface Waters of the South Nation River Watershed, Ontario, Canada

Emilie Lyautey; David R. Lapen; Graham Wilkes; Katherine McCleary; Franco Pagotto; Kevin Tyler; Alain Hartmann; Pascal Piveteau; Aurélie Rieu; William Robertson; Diane Medeiros; Thomas A. Edge; Victor P. J. Gannon; Edward Topp

ABSTRACT Listeria monocytogenes is a facultative intracellular pathogen thought to be widely distributed in the environment. We investigated the prevalence and characteristics of L. monocytogenes isolates from surface waters derived from catchments within the South Nation River watershed (Ontario, Canada). This watershed is dominated by urban and rural development, livestock and crop production, and wildlife habitats. From June to November 2005, a total of 314 surface water samples were collected biweekly from 22 discrete sampling sites characterized by various upstream land uses. Presumptive Listeria spp. were isolated using a selective enrichment and isolation procedure, and 75 L. monocytogenes isolates were identified based on colony morphology, hemolytic activity, and amplification of three pathogenicity genes: iap, inlA, and hlyA. Thirty-two of 314 (10%) surface water samples were positive for the presence of L. monocytogenes, but detection ranged between 0 and 27% depending on the sampling date. Isolates belonging to serovar group 1/2a, 3a (50%) and group 4b, 4d, 4e (32%) were dominant. L. monocytogenes populations were resolved into 13 EcoRI ribotypes and 21 ApaI and 21 AscI pulsotypes. These had Simpson indexes of discrimination of up to 0.885. Lineage I-related isolates were dominant (61%) during the summer, whereas lineage II isolates were dominant (77%) in the fall. Isolates were, on average, resistant to 6.1 ± 2.1 antibiotics out of 17 tested. Half of the L. monocytogenes isolates exhibited potential virulence linked to the production of a functional internalin A, and some isolates were found to be moderately to highly virulent by in vitro Caco-2 plaque formation assay (up to 28% of entry). There was a statistically significant link between the occurrence of L. monocytogenes and proximity to an upstream dairy farm and degree of cropped land. Our data indicate that L. monocytogenes is widespread in the studied catchments, where it could represent a public health issue related to agricultural land use.


Applied and Environmental Microbiology | 2007

Tracking Host Sources of Cryptosporidium spp. in Raw Water for Improved Health Risk Assessment

Norma J. Ruecker; Shannon L. Braithwaite; Edward Topp; Thomas A. Edge; David R. Lapen; Graham Wilkes; William Robertson; Diane Medeiros; Christoph W. Sensen; Norman F. Neumann

ABSTRACT Recent molecular evidence suggests that different species and/or genotypes of Cryptosporidium display strong host specificity, altering our perceptions regarding the zoonotic potential of this parasite. Molecular forensic profiling of the small-subunit rRNA gene from oocysts enumerated on microscope slides by U.S. Environmental Protection Agency method 1623 was used to identify the range and prevalence of Cryptosporidium species and genotypes in the South Nation watershed in Ontario, Canada. Fourteen sites within the watershed were monitored weekly for 10 weeks to assess the occurrence, molecular composition, and host sources of Cryptosporidium parasites impacting water within the region. Cryptosporidium andersoni, Cryptosporidium muskrat genotype II, Cryptosporidium cervine genotype, C. baileyi, C. parvum, Cryptosporidium muskrat genotype I, the Cryptosporidium fox genotype, genotype W1, and genotype W12 were detected in the watershed. The molecular composition of the Cryptosporidium parasites, supported by general land use analysis, indicated that mature cattle were likely the main source of contamination of the watershed. Deer, muskrats, voles, birds, and other wildlife species, in addition to sewage (human or agricultural) may also potentially impact water quality within the study area. Source water protection studies that use land use analysis with molecular genotyping of Cryptosporidium parasites may provide a more robust source-tracking tool to characterize fecal impacts in a watershed. Moreover, the information is vital for assessing environmental and human health risks posed by water contaminated with zoonotic and/or anthroponotic forms of Cryptosporidium.


Canadian Journal of Microbiology | 2007

Characteristics and frequency of detection of fecal Listeria monocytogenes shed by livestock, wildlife, and humans

Emilie Lyautey; Alain Hartmann; Franco PagottoF. Pagotto; Kevin Tyler; David R. Lapen; Graham Wilkes; Pascal Piveteau; Aurélie Rieu; William Robertson; Diane Medeiros; Thomas A. Edge; Victor GannonV. Gannon; Edward Topp

Listeria monocytogenes is a facultative intracellular pathogen that can be carried asymptomatically in various animals and can be shed in feces. We investigated the prevalence and characteristics of L. monocytogenes isolated from livestock, wildlife, and human potential sources of contamination in 2 areas in Ontario, Canada. From February 2003 to November 2005, a total of 268 fecal samples were collected from different animals. Listeria monocytogenes was isolated using selective enrichment, isolation, and confirmation procedures, and 15 samples (6%) yielded to the isolation of 84 confirmed strains. Listeria monocytogenes was isolated from livestock (beef and dairy), wildlife (deer, moose, otter, and raccoon), and human (biosolids and septic) fecal sources. Thirty-two isolates were from serovar 1/2a, 34 from serovar 1/2b, 1 from serovar 3a, and 17 from serovar 4b. Listeria monocytogenes populations were resolved into 13 EcoRI ribotypes, and 18 ApaI and 18 AscI pulsotypes, with Simpson indexes of discrimination of 0.878 and 0.907, respectively. A majority (59%) of L. monocytogenes isolates exhibited potential virulence linked to the production of a functional internalin A, which was supported by higher entry into Caco-2 cells (9.3%) than isolates producing truncated and secreted internalin A (1.3% of entry). Listeria monocytogenes fecal isolates were on average resistant to 6.4 +/- 2.5 antibiotics out of 17 tested, and potentially virulent isolates exhibited an enhanced resistance to kanamycin, gentamicin, streptomycin, and rifampicin. Livestock, wildlife, and human L. monocytogenes fecal communities exhibited overlapping but distinct populations, and some genotypes and phenotypes were similar to those previously described for surface water isolates in the same area.


Applied and Environmental Microbiology | 2010

Distribution and Diversity of Escherichia coli Populations in the South Nation River Drainage Basin, Eastern Ontario, Canada

Emilie Lyautey; Zexun Lu; David R. Lapen; Graham Wilkes; Andrew Scott; Tanya E.BerkersT.E. Berkers; Thomas A. Edge; Edward Topp

ABSTRACT We investigated the prevalence and diversity of Escherichia coli strains isolated from surface waters from multiple watersheds within the South Nation River basin in eastern Ontario, Canada. The basin is composed of mixed but primarily agricultural land uses. From March 2004 to November 2007, a total of 2,004 surface water samples were collected from 24 sampling sites. E. coli densities ranged from undetectable to 1.64 × 105 CFU 100 ml−1 and were correlated with stream order and proximity to livestock production systems. The diversity of 21,307 E. coli isolates was characterized using repetitive extragenic palindromic PCR (rep-PCR), allowing for the identification of as many as 7,325 distinct genotypes, without capturing all of the diversity. The community was temporally and spatially dominated by a few dominant genotypes (clusters of more than 500 isolates) and several genotypes of intermediary abundance (clustering between 10 and 499 isolates). Simpson diversity indices, assessed on a normalized number of isolates per sample, ranged from 0.050 to 0.668. Simpson indices could be statistically discriminated on the basis of year and stream order, but land use, discharge, weather, and water physical-chemical properties were not statistically important discriminators. The detection of Campylobacter species was associated with statistically lower Simpson indices (greater diversity; P < 0.05). Waterborne E. coli isolates from genotypes of dominant and intermediary abundance were clustered with isolates obtained from fecal samples collected in the study area over the same period, and 90% of the isolates tested proved to share genotypes with fecal isolates. Overall, our data indicated that the densities and distribution of E. coli in these mixed-use watersheds were linked to stream order and livestock-based land uses. Waterborne E. coli populations that were distinct from fecal isolates were detected and, on this basis, were possibly naturalized E. coli strains.


Water Research | 2012

Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water

Norma J. Ruecker; Joanne C. Matsune; Graham Wilkes; David R. Lapen; Edward Topp; Thomas A. Edge; Christoph W. Sensen; Lihua Xiao; Norman F. Neumann

The high sequence diversity and heterogeneity observed within species or genotypes of Cryptosporidium requires phylogenetic approaches for the identification of novel sequences obtained from the environment. A long-term study on Cryptosporidium in the agriculturally-intensive South Nation River watershed in Ontario, Canada was undertaken, in which 60 sequence types were detected. Of these sequence types 33 were considered novel with no identical matches in GenBank. Detailed phylogenetic analysis identified that most sequences belonged to 17 previously described species: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium hominis, Cryptosporidium parvum, Cryptosporidium ubiquitum, Cryptosporidium meleagridis, muskrat I, muskrat II, deer mouse II, fox, vole, skunk, shrew, W12, W18, W19 and W25 genotypes. In addition, two new genotypes were identified, W27 and W28. C. andersoni and the muskrat II genotype were most frequently detected in the water samples. Species associated with livestock made up 39% of the total molecular detections, while wildlife associated species and genotypes accounted for 55% of the Cryptosporidium identified. The human pathogenic species C. hominis and C. parvum had an overall prevalence of 1.6% in the environment, indicating a small risk to humans from the Cryptosporidium present in the watershed. Phylogenetic analysis and knowledge of host-parasite relationships are fundamental in using Cryptosporidium as a source-tracking or human health risk assessment tool.


Journal of Environmental Quality | 2012

Spatial and temporal drivers of zoonotic pathogen contamination of an agricultural watershed.

Cassandra C. Jokinen; Thomas A. Edge; Wendell Koning; Chad R. Laing; David R. Lapen; Jim J. Miller; Steven K. Mutschall; Andrew Scott; Eduardo N. Taboada; James E. Thomas; Edward Topp; Graham Wilkes; Victor P. J. Gannon

In regions where animal agriculture is prominent, such as southern Alberta, higher rates of gastrointestinal illness have been reported when compared with nonagricultural regions. This difference in the rate of illness is thought to be a result of increased zoonotic pathogen exposure through environmental sources such as water. In this study, temporal and spatial factors associated with bacterial pathogen contamination of the Oldman River, which transverses this region, were analyzed using classification and regression tree analysis. Significantly higher levels of fecal indicators; more frequent isolations of Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica spp.; and higher rates of detection of pig-specific Bacteroides markers occurred at downstream sites than at upstream sites, suggesting additive stream inputs. Fecal indicator densities were also significantly higher when any one of these three bacterial pathogens was present and where there were higher total animal manure units; however, occasionally pathogens were present when fecal indicator levels were low or undetectable. Overall, Salmonella spp., Campylobacter spp., and E. coli O157:H7 presence was associated with season, animal manure units, and total rainfall on the day of sampling and 3 d in advance of sampling. Several of the environmental variables analyzed in this study appear to influence pathogen prevalence and therefore may be useful in predicting water quality and safety and in the improvement of watershed management practices in this and other agricultural regions.


Water Research | 2013

Quantitative multi-year elucidation of fecal sources of waterborne pathogen contamination in the South Nation River basin using Bacteroidales microbial source tracking markers

Romain Marti; Victor P. J. Gannon; Cassandra C. Jokinen; Martin Lanthier; David R. Lapen; Norman F. Neumann; Norma J. Ruecker; Andrew Scott; Graham Wilkes; Yun Zhang; Edward Topp

Over a seven-year period (2004-2010) 1095 water samples were obtained from the South Nation River basin at multiple watershed monitoring sites (Ontario, Canada). Real-time PCR using Bacteroidales specific markers was used to identify the origin (human (10% prevalence), ruminant (22%), pig (~2%), Canada goose (4%) and muskrat (7%)) of fecal pollution. In parallel, the distribution of fecal indicator bacteria and waterborne pathogens (Cryptosporidium oocysts, Giardia cysts, Escherichia coli O157:H7, Salmonella enterica and Campylobacter spp.) was evaluated. Associations between the detection of specific Bacteroidales markers and the presence of fecal indicator bacteria, pathogens, and distinct land use or environmental variables were evaluated. Linear correlations between Bacteroidales markers and fecal indicator bacteria were weak. However, mean marker densities, and the presence and absence of markers could be discriminated on the basis of threshold fecal indicator densities. The ruminant-specific Bacteroidales marker was the most frequently detected marker in water, consistent with the large number of dairy farms in the study area. Detection of the human or the ruminant markers were associated with a slightly higher risk of detecting S. enterica. Detection of the muskrat marker was related to more frequent Campylobacter spp. detections. Important positive associations between markers and pathogens were found among: i) total Bacteroidales and Cryptosporidium and Giardia, ii) ruminant marker and S. enterica, and iii) muskrat and Campylobacter spp.


Applied and Environmental Microbiology | 2013

Spatiotemporal Analysis of Cryptosporidium Species/Genotypes and Relationships with Other Zoonotic Pathogens in Surface Water from Mixed-Use Watersheds

Graham Wilkes; Norma J. Ruecker; Norman F. Neumann; Victor P. J. Gannon; Cassandra C. Jokinen; Mark Sunohara; Edward Topp; Katarina Pintar; Thomas A. Edge; David R. Lapen

ABSTRACT Nearly 690 raw surface water samples were collected during a 6-year period from multiple watersheds in the South Nation River basin, Ontario, Canada. Cryptosporidium oocysts in water samples were enumerated, sequenced, and genotyped by detailed phylogenetic analysis. The resulting species and genotypes were assigned to broad, known host and human infection risk classes. Wildlife/unknown, livestock, avian, and human host classes occurred in 21, 13, 3, and <1% of sampled surface waters, respectively. Cryptosporidium andersoni was the most commonly detected livestock species, while muskrat I and II genotypes were the most dominant wildlife genotypes. The presence of Giardia spp., Salmonella spp., Campylobacter spp., and Escherichia coli O157:H7 was evaluated in all water samples. The greatest significant odds ratios (odds of pathogen presence when host class is present/odds of pathogen presence when host class is absent) for Giardia spp., Campylobacter spp., and Salmonella spp. in water were associated, respectively, with livestock (odds ratio of 3.1), avian (4.3), and livestock (9.3) host classes. Classification and regression tree analyses (CART) were used to group generalized host and human infection risk classes on the basis of a broad range of environmental and land use variables while tracking cooccurrence of zoonotic pathogens in these groupings. The occurrence of livestock-associated Cryptosporidium was most strongly related to agricultural water pollution in the fall (conditions also associated with elevated odds ratios of other zoonotic pathogens occurring in water in relation to all sampling conditions), whereas wildlife/unknown sources of Cryptosporidium were geospatially associated with smaller watercourses where urban/rural development was relatively lower. Conditions that support wildlife may not necessarily increase overall human infection risks associated with Cryptosporidium since most Cryptosporidium genotypes classed as wildlife in this study (e.g., muskrat I and II genotype) do not pose significant infection risks to humans. Consequently, from a human health perspective, land use practices in agricultural watersheds that create opportunities for wildlife to flourish should not be rejected solely on the basis of their potential to increase relative proportions of wildlife fecal contamination in surface water. The present study suggests that mitigating livestock fecal pollution in surface water in this region would likely reduce human infection risks associated with Cryptosporidium and other zoonotic pathogens.

Collaboration


Dive into the Graham Wilkes's collaboration.

Top Co-Authors

Avatar

David R. Lapen

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Edward Topp

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cassandra C. Jokinen

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Victor P. J. Gannon

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

E. Topp

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Mark Sunohara

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Izhar U.H. Khan

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge