Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grainne Kerr is active.

Publication


Featured researches published by Grainne Kerr.


Nature Methods | 2014

E-CRISP: fast CRISPR target site identification

Florian Heigwer; Grainne Kerr; Michael Boutros

encodes an RNA (crRNA), consisting of a guide RNA (gRNA) and transactivating CRISPR RNA parts. A processed crRNA fragment is incorporated into the Cas9 protein, guiding it to the target DNA, where the Cas9 nuclease introduces a double-strand break9,10. The CRISPR-Cas system has been successfully used in human induced pluripotent stem cells, mice, zebrafish and flies, among other organisms, to disrupt gene function. Here we describe E-CRISP, a web application to design gRNA sequences (Fig. 1a). It provides flexible output and experimentoriented design parameters, enabling design of multiple libraries and thereby systematic analysis of the influence of different parameters. E-CRISP identifies target sequences complementary to the gRNA ending in a 3ʹ protospacer-adjacent motif (PAM), N(G or A)G, which is required for the recruited Cas9 nuclease to cut the DNA double strand. E-CRISP uses a fast indexing approach to find binding sites and a binary interval tree for rapid annotation of putative gRNA target sites (Supplementary Note 1). Using these algorithms, it is feasible to create genome-scale libraries for several organisms in a few hours. For instance, to design a library covering the Drosophila melanogaster genome requires less than 1 h (Supplementary Fig. 1 and Supplementary Table 1). Off-target effects and target-site homology are evaluated by E-CRISP using the alignment program Bowtie2 (Supplementary Note 2). Designs are shown in the output if the number of offtargets does not exceed a user-specified threshold. If more than one design is found targeting a desired locus, designs are ranked according to on-target specificity and number of off-targets. E-CRISP can also be used to reevaluate CRISPR constructs for onor off-target sites and targeted genomic loci. As an example, we searched for designs to target let-7 for gene disruption in zebrafish, fly, worm and human (Fig. 1b). We found at least one gRNA design per locus. In worm, fly and human, the cuts are located at the site that is transformed to mature microRNA and thus should lead to mutations blocking its proper function. In zebrafish the cut is located in the predicted hairpin structure. E-CRISP is available for twelve organisms and can be easily extended. E-CRISP will help to further develop and deploy the acKnoWLedGments This work was supported by the Wellcome Trust through a Senior Research Fellowship to J.R. (084229), a core grant to the Wellcome Trust Centre for Cell Biology (092076), a European Research Council grant (233457) to M.T., a Genome Québec International Recruitment Award to M.T. and a Canada Research Chair in Systems and Synthetic Biology to M.T.


Nature Communications | 2013

Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells

Oksana Voloshanenko; Gerrit Erdmann; Taronish D. Dubash; Iris Augustin; Marie Metzig; Giusi Moffa; Christian Hundsrucker; Grainne Kerr; Thomas Sandmann; Benedikt Anchang; Kubilay Demir; Christina Boehm; Svenja Leible; Claudia R. Ball; Hanno Glimm; Rainer Spang; Michael Boutros

Aberrant regulation of the Wnt/β-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or β-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or β-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind β-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or β-catenin depend on Wnt ligands and their secretion for a sufficient level of β-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls.


Nucleic Acids Research | 2013

GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update

Esther Schmidt; Oliver Pelz; Svetlana Buhlmann; Grainne Kerr; Thomas Horn; Michael Boutros

RNA interference (RNAi) represents a powerful method to systematically study loss-of-function phenotypes on a large scale with a wide variety of biological assays, constituting a rich source for the assignment of gene function. The GenomeRNAi database (http://www.genomernai.org) makes available RNAi phenotype data extracted from the literature for human and Drosophila. It also provides RNAi reagent information, along with an assessment as to their efficiency and specificity. This manuscript describes an update of the database previously featured in the NAR Database Issue. The new version has undergone a complete re-design of the user interface, providing an intuitive, flexible framework for additional functionalities. Screen information and gene-reagent-phenotype associations are now available for download. The integration with other resources has been improved by allowing in-links via GenomeRNAi screen IDs, or external gene or reagent identifiers. A distributed annotation system (DAS) server enables the visualization of the phenotypes and reagents in the context of a genome browser. We have added a page listing ‘frequent hitters’, i.e. genes that show a phenotype in many screens, which might guide on-going RNAi studies. Structured annotation guidelines have been established to facilitate consistent curation, and a submission template for direct submission by data producers is available for download.


Embo Molecular Medicine | 2012

The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis

Iris Augustin; Violaine Goidts; Angelika Bongers; Grainne Kerr; Gordon Vollert; Bernhard Radlwimmer; Christian Hartmann; Christel Herold-Mende; Guido Reifenberger; Andreas von Deimling; Michael Boutros

Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt‐specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan‐Wnt protein secretion, affecting both canonical and non‐canonical signalling. We demonstrate that its depletion in glioma and glioma‐derived stem‐like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway‐specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production.


PLOS ONE | 2012

RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering.

Alina Sîrbu; Grainne Kerr; Martin Crane; Heather J. Ruskin

With the fast development of high-throughput sequencing technologies, a new generation of genome-wide gene expression measurements is under way. This is based on mRNA sequencing (RNA-seq), which complements the already mature technology of microarrays, and is expected to overcome some of the latter’s disadvantages. These RNA-seq data pose new challenges, however, as strengths and weaknesses have yet to be fully identified. Ideally, Next (or Second) Generation Sequencing measures can be integrated for more comprehensive gene expression investigation to facilitate analysis of whole regulatory networks. At present, however, the nature of these data is not very well understood. In this paper we study three alternative gene expression time series datasets for the Drosophila melanogaster embryo development, in order to compare three measurement techniques: RNA-seq, single-channel and dual-channel microarrays. The aim is to study the state of the art for the three technologies, with a view of assessing overlapping features, data compatibility and integration potential, in the context of time series measurements. This involves using established tools for each of the three different technologies, and technical and biological replicates (for RNA-seq and microarrays, respectively), due to the limited availability of biological RNA-seq replicates for time series data. The approach consists of a sensitivity analysis for differential expression and clustering. In general, the RNA-seq dataset displayed highest sensitivity to differential expression. The single-channel data performed similarly for the differentially expressed genes common to gene sets considered. Cluster analysis was used to identify different features of the gene space for the three datasets, with higher similarities found for the RNA-seq and single-channel microarray dataset.


Nucleic Acids Research | 2013

E-TALEN: a web tool to design TALENs for genome engineering

Florian Heigwer; Grainne Kerr; Nike Walther; Kathrin Glaeser; Oliver Pelz; Marco Breinig; Michael Boutros

Use of transcription activator-like effector nucleases (TALENs) is a promising new technique in the field of targeted genome engineering, editing and reverse genetics. Its applications span from introducing knockout mutations to endogenous tagging of proteins and targeted excision repair. Owing to this wide range of possible applications, there is a need for fast and user-friendly TALEN design tools. We developed E-TALEN (http://www.e-talen.org), a web-based tool to design TALENs for experiments of varying scale. E-TALEN enables the design of TALENs against a single target or a large number of target genes. We significantly extended previously published design concepts to consider genomic context and different applications. E-TALEN guides the user through an end-to-end design process of de novo TALEN pairs, which are specific to a certain sequence or genomic locus. Furthermore, E-TALEN offers a functionality to predict targeting and specificity for existing TALENs. Owing to the computational complexity of many of the steps in the design of TALENs, particular emphasis has been put on the implementation of fast yet accurate algorithms. We implemented a user-friendly interface, from the input parameters to the presentation of results. An additional feature of E-TALEN is the in-built sequence and annotation database available for many organisms, including human, mouse, zebrafish, Drosophila and Arabidopsis, which can be extended in the future.


Developmental Biology | 2015

Dpp/Gbb signaling is required for normal intestinal regeneration during infection

Jun Zhou; Sebastian Florescu; Anna Lisa Boettcher; Lichao Luo; Devanjali Dutta; Grainne Kerr; Yu Cai; Bruce A. Edgar; Michael Boutros

Maintaining tissue homeostasis is a critical process during infection and inflammation. Tissues with a high intrinsic turnover, such as the intestinal epithelium, must launch a rapid response to infections while simultaneously coordinating cell proliferation and differentiation decisions. In this study, we searched for genes required for regeneration of the Drosophila intestine, and thereby affecting overall organism survival after infection with pathogenic bacteria. We found that Dpp/Gbb (BMP) signaling is essential for normal midgut regeneration, and that infection induces the BMP signaling ligands Dpp and Gbb. We demonstrate that Dpp is induced in visceral muscle and required for signaling activation. Subsequently, Gbb is induced in enterocytes after oral infection. Loss-of Dpp signaling in ISCs and transient committed progenitors called enteroblasts (EBs), or in EBs alone, led to a blockage in EC differentiation or maturation. Furthermore, our data show that down-regulation of Dpp signaling in the precursor cells including EBs also resulted in an increased number of abnormally small Pdm1-positive cells, suggesting a role of Dpp/Gbb signaling in EC growth. In addition, we show that Dpp/Gbb signaling acted downstream or in parallel to the Notch pathway to promote EC differentiation and growth. Our results suggest that Dpp/BMP signaling plays an important role in EBs to maintain tissue integrity and homeostasis during pathogenic infections.


PLOS ONE | 2015

Amplicon Sequencing of Colorectal Cancer: Variant Calling in Frozen and Formalin-Fixed Samples

Johannes Betge; Grainne Kerr; Thilo Miersch; Svenja Leible; Gerrit Erdmann; Christian Galata; T Zhan; Timo Gaiser; Stefan Post; Matthias P. Ebert; Karoline Horisberger; Michael Boutros

Next generation sequencing (NGS) is an emerging technology becoming relevant for genotyping of clinical samples. Here, we assessed the stability of amplicon sequencing from formalin-fixed paraffin-embedded (FFPE) and paired frozen samples from colorectal cancer metastases with different analysis pipelines. 212 amplicon regions in 48 cancer related genes were sequenced with Illumina MiSeq using DNA isolated from resection specimens from 17 patients with colorectal cancer liver metastases. From ten of these patients, paired fresh frozen and routinely processed FFPE tissue was available for comparative study. Sample quality of FFPE tissues was determined by the amount of amplifiable DNA using qPCR, sequencing libraries were evaluated using Bioanalyzer. Three bioinformatic pipelines were compared for analysis of amplicon sequencing data. Selected hot spot mutations were reviewed using Sanger sequencing. In the sequenced samples from 16 patients, 29 non-synonymous coding mutations were identified in eleven genes. Most frequent were mutations in TP53 (10), APC (7), PIK3CA (3) and KRAS (2). A high concordance of FFPE and paired frozen tissue samples was observed in ten matched samples, revealing 21 identical mutation calls and only two mutations differing. Comparison of these results with two other commonly used variant calling tools, however, showed high discrepancies. Hence, amplicon sequencing can potentially be used to identify hot spot mutations in colorectal cancer metastases in frozen and FFPE tissue. However, remarkable differences exist among results of different variant calling tools, which are not only related to DNA sample quality. Our study highlights the need for standardization and benchmarking of variant calling pipelines, which will be required for translational and clinical applications.


Advances in Complex Systems | 2010

EDGE WEIGHTING OF GENE EXPRESSION GRAPHS

Grainne Kerr; Dimitri Perrin; Heather J. Ruskin; Martin Crane

In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed. Keywords: Edge-weighting; weighted graphs; gene expression; bi-clustering


Science Signaling | 2017

Autocrine Wnt regulates the survival and genomic stability of embryonic stem cells

Iris Augustin; Dyah L. Dewi; Jennifer Hundshammer; Gerrit Erdmann; Grainne Kerr; Michael Boutros

Wnt signaling ensures proper chromosome segregation and genomic stability in proliferating embryonic stem cells. Genomic instability without Wnt Unlike most cells in the body, embryonic stem cells renew themselves and can differentiate into almost any cell type. Although embryonic stem cells have been proposed to treat a myriad of human diseases, their use is fraught with the risk of the formation of noncancerous tumors called teratomas. The Wnt family of ligands promotes both the self-renewal and differentiation of embryonic stem cells. Augustin et al. either genetically ablated or overexpressed Evi, a protein that transports Wnts through the secretory pathway, in mouse embryonic stem cells, which would be expected to block or enhance the secretion of any of the Wnt family of ligands produced by these cells. Reducing Wnt secretion reduced the incidence of teratoma formation by Evi-deficient embryonic stem cells injected into mice. Furthermore, Wnt secretion ensured that proliferating embryonic stem cells segregated chromosomes properly and did not undergo apoptosis. Thus, enhancing Wnt signaling may prevent genomic instability in embryonic stem cells, which could help advance therapeutic application of stem cells. Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.

Collaboration


Dive into the Grainne Kerr's collaboration.

Top Co-Authors

Avatar

Michael Boutros

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Iris Augustin

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerrit Erdmann

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Oliver Pelz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Andreas von Deimling

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Angelika Bongers

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Bernhard Radlwimmer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge