Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grainne M. McAlonan is active.

Publication


Featured researches published by Grainne M. McAlonan.


Schizophrenia Bulletin | 2011

Brain Anatomical Abnormalities in High-Risk Individuals, First-Episode, and Chronic Schizophrenia: An Activation Likelihood Estimation Meta-analysis of Illness Progression

Raymond C.K. Chan; Xin Di; Grainne M. McAlonan; Qiyong Gong

OBJECTIVE The present study reviewed voxel-based morphometry (VBM) studies on high-risk individuals with schizophrenia, patients experiencing their first-episode schizophrenia (FES), and those with chronic schizophrenia. We predicted that gray matter abnormalities would show progressive changes, with most extensive abnormalities in the chronic group relative to FES and least in the high-risk group. METHOD Forty-one VBM studies were reviewed. Eight high-risk studies, 14 FES studies, and 19 chronic studies were analyzed using anatomical likelihood estimation meta-analysis. RESULTS Less gray matter in the high-risk group relative to controls was observed in anterior cingulate regions, left amygdala, and right insula. Lower gray matter volumes in FES compared with controls were also found in the anterior cingulate and right insula but not the amygdala. Lower gray matter volumes in the chronic group were most extensive, incorporating similar regions to those found in FES and high-risk groups but extending to superior temporal gyri, thalamus, posterior cingulate, and parahippocampal gryus. Subtraction analysis revealed less frontotemporal, striatal, and cerebellar gray matter in FES than the high-risk group; the high-risk group had less gray matter in left subcallosal gyrus, left amygdala, and left inferior frontal gyrus compared with FES. Subtraction analysis confirmed lower gray matter volumes through ventral-dorsal anterior cingulate, right insula, left amygdala and thalamus in chronic schizophrenia relative to FES. CONCLUSIONS Frontotemporal brain structural abnormalities are evident in nonpsychotic individuals at high risk of developing schizophrenia. The present meta-analysis indicates that these gray matter abnormalities become more extensive through first-episode and chronic illness. Thus, schizophrenia appears to be a progressive cortico-striato-thalamic loop disorder.


Schizophrenia Research | 2007

Cerebral grey, white matter and csf in never-medicated, first episode schizophrenia.

Siew E. Chua; Charlton Cheung; Vinci Cheung; Jack T.K. Tsang; Eric Y.H. Chen; Jason C.H. Wong; Jason Pui Yin Cheung; Lawrance Yip; Kin-shing Tai; John Suckling; Grainne M. McAlonan

We report the first voxel-based morphometric (VBM) study to examine cerebral grey and white matter and cerebrospinal fluid (CSF) using computational morphometry in never-medicated, first-episode psychosis (FEP). Region-of-interest (ROI) analysis was also performed blind to group membership. 26 never-medicated individuals with FEP (23 with DSM-IV schizophrenia) and 38 healthy controls had MRI brain scans. Groups were balanced for age, sex, handedness, ethnicity, paternal socio-economic status, and height. Healthy controls were recruited from the local community by advertisement. Grey matter, white matter, and CSF: global brain volume ratios were significantly smaller in patients. Patients had significantly less grey matter volume in L and R caudate nuclei, cingulate gyri, parahippocampal gyri, superior temporal gyri, cerebellum and R thalamus, prefrontal cortex. They also had significantly less white matter volume in the R anterior limb of the internal capsule fronto-occipital fasciculus and L and R fornices, and significantly greater CSF volume especially in the R lateral ventricle. Excluding the 3 subjects with brief psychotic disorder did not alter our results. Our data suggest that fronto-temporal and subcortical-limbic circuits are morphologically abnormal in never-medicated, schizophrenia. ROI analysis comparing the schizophrenia group (n=23) with the healthy controls (n=38) confirmed caudate volumes were significantly smaller bilaterally by 11%, and lateral ventricular volume was significantly larger on the right by 26% in the patients. Caudate nuclei and lateral ventricular volume measurements were uncorrelated (Pearson correlation coefficient 0.30, p=0.10), ruling out the possibility of segmentation artefact. Ratio of lateral ventricle to caudate volume was bilaterally significantly increased (p<0.005, 2-tailed), which could represent an early biomarker in first-episode, never-medicated schizophrenia.


Psychological Medicine | 2008

A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia.

Vinci Cheung; Charlton Cheung; Grainne M. McAlonan; Y. Deng; James Wong; Lkc Yip; Kuochou Tai; Pl Khong; Pak Sham; S. E. Chua

BACKGROUND Diffusion tensor imaging (DTI) can be used to investigate cerebral structural connectivity in never-medicated individuals with first-episode schizophrenia. METHOD Subjects with first-episode schizophrenia according to DSM-IV-R who had never been exposed to antipsychotic medication (n=25) and healthy controls (n=26) were recruited. Groups were matched for age, gender, best parental socio-economic status and ethnicity. All subjects underwent DTI and structural magnetic resonance imaging (MRI) scans. Voxel-based analysis was performed to investigate brain regions where fractional anisotropy (FA) values differed significantly between groups. A confirmatory region-of-interest (ROI) analysis of FA scores was performed in which regions were placed blind to group membership. RESULTS In patients, FA values significantly lower than those in healthy controls were located in the left fronto-occipital fasciculus, left inferior longitudinal fasciculus, white matter adjacent to right precuneus, splenium of corpus callosum, right posterior limb of internal capsule, white matter adjacent to right substantia nigra, and left cerebral peduncle. ROI analysis of the corpus callosum confirmed that the patient group had significantly lower mean FA values than the controls in the splenium but not in the genu. The intra-class correlation coefficient (ICC) for independent ROI measurements was 0.90 (genu) and 0.90 (splenium). There were no regions where FA values were significantly higher in the patients than in the healthy controls. CONCLUSIONS Widespread structural dysconnectivity, including the subcortical region, is already present in neuroleptic-naive patients in their first episode of illness.


Journal of Child Psychology and Psychiatry | 2009

White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism

Charlton Cheung; S. E. Chua; Vinci Cheung; Pl Khong; K.S. Tai; Teresa K. W. Wong; Ting Pong Ho; Grainne M. McAlonan

BACKGROUND Individuals with autism have impairments in 3 domains: communication, social interaction and repetitive behaviours. Our previous work suggested early structural and connectivity abnormalities in prefrontal-striato-temporal-cerebellar networks but it is not clear how these are linked to diagnostic indices. METHOD Children with autism (IQ > 70) aged 6 to 14 years old and matched typically developing controls were studied using diffusion tensor imaging. Voxel-based methods were used to compare fractional anisotrophy (FA) measures in each group and to correlate FA measures in the autism group with the diagnostic phenotype described by the Autism Diagnostic Interview - Revised (ADI-R) algorithm for ICD-10. RESULTS After controlling for the effects of age and white matter volume, we found that FA in the autism group was significantly lower than controls in bilateral prefrontal and temporal regions, especially in the right ventral temporal lobe adjacent to the fusiform gyrus. FA was greater in autism in the right inferior frontal gyrus and left occipital lobe. We observed a tight correlation between lower FA and higher ADI-R diagnostic algorithm scores across white matter tracts extending from these focal regions of group difference. Communication and social reciprocity impairments correlated with lower FA throughout fronto-striato-temporal pathways. Repetitive behaviours correlated with white matter indices in more posterior brain pathways, including splenium of the corpus callosum and cerebellum. CONCLUSIONS Our data support the position that diagnostic symptoms of autism are associated with a core disruption of white matter development.


American Journal of Psychiatry | 2006

In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism.

Lisa Page; Eileen Daly; Nicole Schmitz; Andrew Simmons; Fiona Toal; Quinton Deeley; Fiona Ambery; Grainne M. McAlonan; Kieran C. Murphy; Declan Murphy

OBJECTIVE The neural basis for autistic spectrum disorders is unclear, but abnormalities in the development of limbic areas and of glutamate have been suggested. Proton magnetic resonance spectroscopy ((1)H-MRS) can be used to measure the concentration of brain metabolites. However, the concentration of glutamate/glutamine in brain regions implicated in autistic spectrum disorders has not yet been examined in vivo. METHOD The authors used (1)H-MRS to investigate the neuronal integrity of the amygdala-hippocampal complex and a parietal control region in adults with autistic spectrum disorders and healthy subjects. RESULTS People with autistic spectrum disorders had a significantly higher concentration of glutamate/glutamine and creatine/phosphocreatine in the amygdala-hippocampal region but not in the parietal region. CONCLUSIONS Abnormalities in glutamate/glutamine may partially underpin the pathophysiology of autistic spectrum disorders, and the authors confirm earlier reports that limbic areas are metabolically aberrant in these disorders.


Neuroscience | 1993

Effects of medial dorsal thalamic and ventral pallidal lesions on the acquisition of a conditioned place preference : further evidence for the involvement of the ventral striatopallidal system in reward-related processes

Grainne M. McAlonan; Trevor W. Robbins; Barry J. Everitt

In our previous work, it has been established that the basolateral amygdala and ventral striatum are part of a neural system that is involved in reward-related processes. However, it is unclear how information processed in this limbic-motor interface may come to affect incentive motivational responses. The present experiments have investigated the involvement of post-striatal elements of the ventral striatopallidal system in the rat. Lesions of the anterior or posterior domains of the ventral pallidum, which receives the major outflow from the ventral striatum, or the nucleus medialis dorsalis of the thalamus, which receives projections from both the ventral pallidum and also the basolateral amygdala, were made by infusing the excitotoxin, ibotenic acid. The effects of the lesions on the acquisition of a place preference conditioned by exposure of hungry rats to sucrose were then measured. Lesions of either the anterior or posterior ventral pallidum significantly attenuated, whereas lesions of the medial dorsal thalamus completely abolished, the acquisition of a conditioned place preference, provided that the latter lesions included the medial-lateral extent of the nucleus. Medial dorsal thalamic lesions did not damage the stria medullaris or medial habenula. Ingestion of sucrose following 23 h deprivation was unaffected by either ventral pallidal or medial dorsal thalamus lesions and thus disruption of place preference acquisition was not secondary to changes in primary motivation. The results indicate that reward-related processes, as measured in the place preference conditioning paradigm, may depend upon ventral striatopallidal outflow that engages medial dorsal thalamus-frontal cortex mechanisms, in addition to the previously highlighted direct outflow to brainstem elements of the motor system.


Journal of Child Psychology and Psychiatry | 2008

Distinct patterns of grey matter abnormality in high-functioning autism and Asperger’s syndrome

Grainne M. McAlonan; John Suckling; Naikei Wong; Vinci Cheung; Nina Lienenkaemper; Charlton Cheung; Siew E. Chua

BACKGROUND Autism exists across a wide spectrum and there is considerable debate as to whether children with Aspergers syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance imaging (MRI) studies of autism are in disagreement. One possible reason is that the diagnosis of autism takes precedence over Aspergers syndrome and a distinction in language acquisition is rarely made. We therefore planned to examine a whole brain hypothesis that the patterns of grey matter differences in Aspergers syndrome and HFA can be distinguished. METHODS We used voxel-based computational morphometry to map grey matter volume differences in 33 children with either Aspergers syndrome or high-functioning autism compared to 55 typical developing control children balanced for age, IQ, gender, maternal language and ethnicity. RESULTS Children with HFA had significantly smaller grey matter volumes in subcortical, posterior cingulate and precuneus regions than the Aspergers group. Compared to controls, children with HFA had smaller grey matter volumes in predominantly fronto-pallidal regions, while children with Aspergers had less grey matter in mainly bilateral caudate and left thalamus. In addition we found a significant negative correlation between the size of a grey matter cluster around BA44 language area and the age of acquisition of phrase speech in the children with HFA. When the groups were combined we confirmed a mixed picture of smaller grey matter volumes in frontal, basal ganglia, temporal and parietal regions. CONCLUSIONS Our study suggests that the underlying neurobiology in HFA and Aspergers syndrome is at least partly discrete. Future studies should therefore consider the history of language acquisition as a valuable tool to refine investigation of aetiological factors and management options in pervasive developmental disorders.


PLOS ONE | 2010

Autistic Disorders and Schizophrenia: Related or Remote? An Anatomical Likelihood Estimation

Charlton Cheung; Kevin Yu; Germaine Fung; Meikei Leung; Clive Wong; Qi Li; Pak Sham; Siew E. Chua; Grainne M. McAlonan

Shared genetic and environmental risk factors have been identified for autistic spectrum disorders (ASD) and schizophrenia. Social interaction, communication, emotion processing, sensorimotor gating and executive function are disrupted in both, stimulating debate about whether these are related conditions. Brain imaging studies constitute an informative and expanding resource to determine whether brain structural phenotype of these disorders is distinct or overlapping. We aimed to synthesize existing datasets characterizing ASD and schizophrenia within a common framework, to quantify their structural similarities. In a novel modification of Anatomical Likelihood Estimation (ALE), 313 foci were extracted from 25 voxel-based studies comprising 660 participants (308 ASD, 352 first-episode schizophrenia) and 801 controls. The results revealed that, compared to controls, lower grey matter volumes within limbic-striato-thalamic circuitry were common to ASD and schizophrenia. Unique features of each disorder included lower grey matter volume in amygdala, caudate, frontal and medial gyrus for schizophrenia and putamen for autism. Thus, in terms of brain volumetrics, ASD and schizophrenia have a clear degree of overlap that may reflect shared etiological mechanisms. However, the distinctive neuroanatomy also mapped in each condition raises the question about how this is arrived in the context of common etiological pressures.


PLOS ONE | 2009

Prenatal Immune Challenge Is an Environmental Risk Factor for Brain and Behavior Change Relevant to Schizophrenia: Evidence from MRI in a Mouse Model

Qi Li; Charlton Cheung; Ran Wei; Edward S. Hui; Joram Feldon; Urs Meyer; Sookja K. Chung; Siew E. Chua; Pak Sham; Grainne M. McAlonan

Objectives Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. Method We used an established mouse model of maternal immune activation (MIA) by the viral mimic PolyI:C administered in early (day 9) or late (day 17) gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. Results PolyI:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4th ventricle volume but did not disrupt sensorimotor gating. Conclusions Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life.


Evidence-based Complementary and Alternative Medicine | 2012

Neural Acupuncture Unit: A New Concept for Interpreting Effects and Mechanisms of Acupuncture

Zhang-Jin Zhang; Xiao-Min Wang; Grainne M. McAlonan

When an acupuncture needle is inserted into a designated point on the body and mechanical or electrical stimulation is delivered, various neural and neuroactive components are activated. The collection of the activated neural and neuroactive components distributed in the skin, muscle, and connective tissues surrounding the inserted needle is defined as a neural acupuncture unit (NAU). The traditionally defined acupoints represent an anatomical landmark system that indicates local sites where NAUs may contain relatively dense and concentrated neural and neuroactive components, upon which acupuncture stimulation would elicit a more efficient therapeutic response. The NAU-based local mechanisms of biochemical and biophysical reactions play an important role in acupuncture-induced analgesia. Different properties of NAUs are associated with different components of needling sensation. There exist several central pathways to convey NAU-induced acupuncture signals, Electroacupuncture (EA) frequency-specific neurochemical effects are related to different peripheral and central pathways transmitting afferent signals from different frequency of NAU stimulation. More widespread and intense neuroimaging responses of brain regions to acupuncture may be a consequence of more efficient NAU stimulation modes. The introduction of the conception of NAU provides a new theoretical approach to interpreting effects and mechanisms of acupuncture in modern biomedical knowledge framework.

Collaboration


Dive into the Grainne M. McAlonan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siew E. Chua

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Declan Murphy

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Pak Sham

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Qi Li

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Vinci Cheung

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

S. E. Chua

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ran Wei

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge