Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant A. D. Ritchie is active.

Publication


Featured researches published by Grant A. D. Ritchie.


Annual Reports Section "C" (Physical Chemistry) | 2005

4 Cavity ring-down and cavity enhanced spectroscopy using diode lasers

Mikhail Mazurenka; Andrew J. Orr-Ewing; R. Peverall; Grant A. D. Ritchie

Continuous wave (cw) diode lasers are increasingly being used as light sources in the visible and near-IR regions of the spectrum for cavity ring-down spectroscopy (CRDS) and cavity enhanced absorption spectroscopy (CEAS); the latter technique is also widely known as integrated cavity output spectroscopy (ICOS). The very high sensitivities to weak absorptions that are possible with cw CRDS and CEAS, coupled with the quantitative nature of the absorption measurements, are enabling a rapidly expanding range of applications. We review the benefits and practical implementation of these techniques; methods of data analysis for extraction of quantitative absorption data; the sensitivities of cw CRDS and CEAS, and how they might be optimised; and applications of cw CRDS and CEAS in molecular spectroscopy, atmospheric chemistry, plasma and flame chemistry, analytical science, and medical diagnosis via breath analysis. The development of CRDS and CEAS techniques exploiting cw diode lasers and, very recently, high luminosity light-emitting diodes, has stimulated a wealth of high-sensitivity measurements. Highlights include quantitative measurement of various ultra-trace gases such as: NO3, NO2 and ethene in ambient air samples; CO2 isotopologues, ethane and other organic compounds in human breath samples; and excited electronic states of N2 and O2 in plasmas and discharges. Exciting developments include wavelength extension into the mid-IR and UV regions, and use of novel locked-cavity techniques to increase data acquisition rates and sensitivities.


Applied Physics Letters | 2009

Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser

Gus Hancock; J. H. van Helden; R. Peverall; Grant A. D. Ritchie; R. J. Walker

A continuous wave external cavity quantum cascade laser (EC-QCL) operating between 1872 and 1958 cm−1 has been used to make rotationally resolved measurements in the fundamental band of nitric oxide at 140 mTorr, and the ν2 band of water at atmospheric pressure. These measurements demonstrate the advantages of wide tunability and high resolution of the EC-QCL system. From direct absorption spectroscopy on nitric oxide a laser bandwidth of 20 MHz has been deduced and a sensitivity of 8.4×10−4 cm−1 Hz−1/2 was achieved. Wavelength modulation spectroscopy using current modulation enhances the sensitivity by a factor of 23 to 3.7×10−5 cm−1 Hz−1/2.


Analyst | 2010

Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources

Lineke van der Sneppen; Gus Hancock; Clemens F. Kaminski; Toni Laurila; Stuart R. Mackenzie; Simon R. T. Neil; R. Peverall; Grant A. D. Ritchie; Mathias Schnippering; Patrick R. Unwin

A white light-emitting diode (LED) with emission between 420 and 700 nm and a supercontinuum (SC) source with emission between 450 and 2500 nm have been compared for use in evanescent wave broadband cavity-enhanced absorption spectroscopy (EW-BB-CEAS). The method is calibrated using a dye with known absorbance. While the LED is more economic as an excitation source, the SC source is superior both in terms of baseline noise (noise equivalent absorbances lower than 10(-5) compared to 10(-4) absorbance units (a.u.)) and accuracy of the measurement; these baseline noise levels are comparable to evanescent wave cavity ringdown spectroscopy (EW-CRDS) studies while the accessible spectral region of EW-BB-CEAS is much larger (420-750 nm in this study, compared to several tens of nanometres for EW-CRDS). The improvements afforded by the use of an SC source in combination with a high sensitivity detector are demonstrated in the broadband detection of electrogenerated Ir(IV) complexes in a thin-layer electrochemical cell arrangement. Excellent signal to noise is achieved with 10 micros signal accumulation times at a repetition rate of 600 Hz, easily fast enough to follow, in real time, solution kinetics and interfacial processes.


Physical Chemistry Chemical Physics | 2011

nσ* and πσ* excited states in aryl halide photochemistry: a comprehensive study of the UV photodissociation dynamics of iodobenzene

Alan G. Sage; Thomas A. A. Oliver; Daniel Murdock; Martin B. Crow; Grant A. D. Ritchie; Jeremy N. Harvey; Michael N. R. Ashfold

A recent review (Ashfold et al., Phys. Chem. Chem. Phys., 2010, 12, 1218) highlighted the important role of dissociative excited states formed by electron promotion to σ* orbitals in establishing the photochemistry of many molecular hydrides. Here we extend such considerations to molecular halides, with a particular focus on iodobenzene. Two experimental techniques (velocity mapped ion imaging (VMI) and time resolved infrared (IR) diode laser absorption) and electronic structure calculations have been employed in a comprehensive study of the near ultraviolet (UV) photodissociation of gas phase iodobenzene molecules. The VMI studies yield the speeds and angular distributions of the I((2)P(3/2)) and I*((2)P(1/2)) photofragments formed by photolysis in the wavelength range 330 ≥λ≥ 206 nm. Four distinct dissociation channels are observed for the I((2)P(3/2)) atom products, and a further three channels for the I*((2)P(1/2)) fragments. The phenyl (Ph) radical partners formed via one particular I* product channel following excitation at wavelengths 305 ≥λ≥ 250 nm are distributed over a sufficiently select sub-set of vibrational (v) states that the images allow resolution of specific I* + Ph(v) channels, identification of the active product mode (ν(10), an in-plane ring breathing mode), and a refined determination of D(0)(Ph-I) = 23,390 ± 50 cm(-1). The time-resolved IR absorption studies allow determination of the spin-orbit branching ratio in the iodine atom products formed at λ = 248 nm (ϕ(I*) = [I*]/([I] + [I*]) = 0.28 ± 0.04) and at 266 nm (ϕ(I*) = 0.32 ± 0.05). The complementary high-level, spin-orbit resolved ab initio calculations of sections (along the C-I bond coordinate) through the ground and first 19 excited state potential energy surfaces (PESs) reveal numerous excited states in the energy range of current interest. Except at the very shortest wavelength, however, all of the observed I and I* products display limiting or near limiting parallel recoil anisotropy. This encourages discussion of the fragmentation dynamics in terms of excitation to states of A(1) total symmetry and dissociation on the 2A(1) and 4A(1) (σ* ← n/π) PESs to yield, respectively, I and I* products, or via non-adiabatic coupling to other σ* ← n/π PESs that correlate to these respective limits. Similarities (and differences) with the available UV photochemical data for the other aryl halides, and with the simpler (and more thoroughly studied) iodides HI and CH(3)I, are summarised.


Chemical Physics Letters | 2001

Cavity-enhanced absorption spectroscopy of methane at 1.73 μm

Hugh R. Barry; L. Corner; G. Hancock; R. Peverall; Grant A. D. Ritchie

Abstract The integrated cavity output spectroscopy technique has been applied to the study of methane near 1.73 μm using a tunable diode laser. We have shown that this simple approach produces accurate high resolution spectra and have achieved a detection sensitivity of 1.8×10 −7 cm −1 for mirror reflectivities of 99.84%.


Analytical Chemistry | 2013

Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection.

Luca Ciaffoni; Gus Hancock; Jeremy J. Harrison; Jean-Pierre H. van Helden; Cathryn E. Langley; R. Peverall; Grant A. D. Ritchie; Simon Wood

A high-resolution absorption spectrum of gaseous acetone near 8.2 μm has been taken using both Fourier transform and quantum cascade laser (QCL)-based infrared spectrometers. Absolute absorption cross sections within the 1215-1222 cm(-1) range have been determined, and the spectral window around 1216.5 cm(-1) (σ = 3.4 × 10(-19) cm(2) molecule(-1)) has been chosen for monitoring trace acetone in exhaled breath. Acetone at sub parts-per-million (ppm) levels has been measured in a breath sample with a precision of 0.17 ppm (1σ) by utilizing a cavity enhanced absorption spectrometer constructed from the QCL source and a linear, low-volume, optical cavity. The use of a water vapor trap ensured the accuracy of the results, which have been corroborated by mass spectrometric measurements.


Journal of Breath Research | 2011

Laser spectroscopy on volatile sulfur compounds: possibilities for breath analysis

Luca Ciaffoni; R. Peverall; Grant A. D. Ritchie

There is an emerging interest in the detection of volatile sulfur compounds (VSCs) in the breath environment, given their biological relevance as potential signatures of several pathological conditions. Particularly, laser-based spectroscopic sensors are candidates for conducting accurate breath diagnostics in clinical settings. With these aims in mind, the current status of VSC sensing via laser absorption spectroscopy is reviewed in this paper. Attention has been focused on the most promising exhaled markers of pathological conditions, namely hydrogen sulfide, carbonyl sulfide, methanethiol, carbon disulfide and dimethyl sulfide. Details of the most relevant spectroscopic studies conducted on such molecules are presented, together with suggestions on the future direction of this challenging analytical field.


Optical Engineering | 2010

Applications of midinfrared quantum cascade lasers to spectroscopy

Gus Hancock; Grant A. D. Ritchie; Jean-Pierre H. van Helden; Richard T. Walker; Damien Weidmann

We review the use of both pulsed and continuous wave quantum cascade lasers in high-resolution spectroscopic studies of gas phase species. In particular, the application of pulsed systems for probing kinetic processes and the inherent rapid passage structure that accompanies observations of low-pressure samples using these rapidly chirped devices are highlighted. Broadband absorber spectroscopy and time-resolved concentration measurements of short-lived species, respectively exploiting the wide intrapulse tuning range and the pulse temporal resolution, are also mentioned. For comparison, we also present recent sub-Doppler Lamb-dip measurements on a low-pressure sample of NO, using a continuous wave external cavity quantum cascade laser system. Using this methodology the stability and resolution of this source is quantified. We find that the laser linewidth as measured via the Lamb-dip is ca. 2.7 MHz as the laser is tuned at comparably slow rates, but decreases to 1.3 MHz as the laser scan rate is increased such that the transition is observed at 30 kHz. Using this source, wavelength modulation spectroscopy of NO is presented.


Journal of Chemical Physics | 2006

The photodissociation dynamics of ozone at 193nm: An O(D21) angular momentum polarization study

M. Brouard; R. Cireasa; A. P. Clark; G. C. Groenenboom; Gus Hancock; S. J. Horrocks; F. Quadrini; Grant A. D. Ritchie; Claire Vallance

Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(1D2) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe transitions has enabled a comprehensive characterization of the angular momentum polarization of the O(1D2) photofragments, in addition to providing high-resolution information about their speed and angular distributions. Images obtained at the probe laser wavelength of around 205 nm indicate dissociation primarily via the Hartley band, involving absorption to, and diabatic dissociation on, the B 1B2(3 1A1) potential energy surface. Rather different O(1D2) speed and electronic angular momentum spatial distributions are observed at 193 nm, suggesting that the dominant excitation at these photon energies is to a state of different symmetry from that giving rise to the Hartley band and also indicating the participation of at least one other state in the dissociation process. Evidence for a contribution from absorption into the tail of the Hartley band at 193 nm is also presented. A particularly surprising result is the observation of nonzero, albeit small values for all three rank K = 1 orientation moments of the angular momentum distribution. The polarization results obtained at 193 and 205 nm, together with those observed previously at longer wavelengths, are interpreted using an analysis of the long range quadrupole-quadrupole interaction between the O(1D2) and O2(1Deltag) species.


Journal of Breath Research | 2009

A chemometric study on human breath mass spectra for biomarker identification in cystic fibrosis

L Bennett; Luca Ciaffoni; Wolfgang Denzer; G. Hancock; A D Lunn; R. Peverall; S Praun; Grant A. D. Ritchie

Alveolar breath samples from a small case-control study population have been collected and measured via ion-molecule reaction mass spectrometry, and a constructive statistical approach to the identification of volatile biomarkers has been formulated by applying multivariate statistical methods on the mass spectra. The nature of the data is such that the number of variables largely exceeds the observations, representing a typical experimental scenario when breath analysis is conducted using mass spectrometry. Principal components analysis has been performed on the high dimensional dataset of molecular abundances, providing evidence of case separation and reducing the number of functional discriminators by almost 90%. Afterwards, a deductive approach based on a binary regression was conducted on the reduced dataset, providing an entirely reliable case discrimination model exclusively depending on the concentrations in the breath mixture of 3 out of a total of 97 metabolites.

Collaboration


Dive into the Grant A. D. Ritchie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damien Weidmann

Rutherford Appleton Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge