Grant A. Hartzog
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grant A. Hartzog.
The EMBO Journal | 2003
Rajna Simic; Derek L. Lindstrom; Hien G. Tran; Kelli L. Roinick; Patrick J. Costa; Alexander D. Johnson; Grant A. Hartzog; Karen M. Arndt
Transcription in eukaryotes is influenced by the chromatin state of the template, and chromatin remodeling factors have well‐documented roles in regulating transcription initiation by RNA polymerase (pol) II. Chromatin also influences transcription elongation; however, little is known about the role of chromatin remodeling factors in this process. Here, we present evidence that the Saccharomyces cerevisiae chromatin remodeling factor Chd1 functions during transcription elongation. First, we identified Chd1 in a two‐hybrid screen for proteins that interact with Rtf1, a member of the Paf1 complex that associates with RNA pol II and regulates transcription elongation. Secondly, we show through co‐immunoprecipitation studies that Chd1 also interacts with components of two essential elongation factors, Spt4–Spt5 and Spt16–Pob3. Thirdly, we demonstrate that deletion of CHD1 suppresses a cold‐sensitive spt5 mutation that is also suppressed by defects in the Paf1 complex and RNA pol II. Finally, we demonstrate that Chd1, Rtf1 and Spt5 associate with actively transcribed regions of chromatin. Collectively, these findings suggest an important role for Chd1 and chromatin remodeling in the control of transcription elongation.
The EMBO Journal | 2002
Sharon Squazzo; Patrick J. Costa; Derek L. Lindstrom; Kathryn E. Kumer; Rajna Simic; Jennifer L. Jennings; Andrew J. Link; Karen M. Arndt; Grant A. Hartzog
We are using biochemical and genetic approaches to study Rtf1 and the Spt4–Spt5 complex, which independently have been implicated in transcription elongation by RNA polymerase II. Here, we report a remarkable convergence of these studies. First, we purified Rtf1 and its associated yeast proteins. Combining this approach with genetic analysis, we show that Rtf1 and Leo1, a protein of unknown function, are members of the RNA polymerase II‐associated Paf1 complex. Further analysis revealed allele‐specific genetic interactions between Paf1 complex members, Spt4–Spt5, and Spt16–Pob3, the yeast counterpart of the human elongation factor FACT. In addition, we independently isolated paf1 and leo1 mutations in an unbiased genetic screen for suppressors of a cold‐sensitive spt5 mutation. These genetic interactions are supported by physical interactions between the Paf1 complex, Spt4–Spt5 and Spt16–Pob3. Finally, we found that defects in the Paf1 complex cause sensitivity to 6‐azauracil and diminished PUR5 induction, properties frequently associated with impaired transcription elongation. Taken together, these data suggest that the Paf1 complex functions during the elongation phase of transcription in conjunction with Spt4–Spt5 and Spt16–Pob3.
Mbio | 2014
Tuajuanda C. Jordan; Sandra H. Burnett; Susan Carson; Steven M. Caruso; Kari Clase; Randall J. DeJong; John J. Dennehy; Dee R. Denver; David Dunbar; Sarah C. R. Elgin; Ann M. Findley; Chris R. Gissendanner; Urszula Golebiewska; Nancy Guild; Grant A. Hartzog; Wendy H. Grillo; Gail P. Hollowell; Lee E. Hughes; Allison Johnson; Rodney A. King; Lynn Lewis; Wei Li; Frank Rosenzweig; Michael R. Rubin; Margaret S. Saha; James Sandoz; Christopher D. Shaffer; Barbara J. Taylor; Louise Temple; Edwin Vazquez
ABSTRACT Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations. Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.
Nature Structural & Molecular Biology | 2005
Todd Burckin; Roland J. Nagel; Yael Mandel-Gutfreund; Lily Shiue; Tyson A. Clark; Jean-Leon Chong; Tien-Hsien Chang; Sharon Squazzo; Grant A. Hartzog; Manuel Ares
Eukaryotic gene expression requires the coordinated activity of many macromolecular machines including transcription factors and RNA polymerase, the spliceosome, mRNA export factors, the nuclear pore, the ribosome and decay machineries. Yeast carrying mutations in genes encoding components of these machineries were examined using microarrays to measure changes in both pre-mRNA and mRNA levels. We used these measurements as a quantitative phenotype to ask how steps in the gene expression pathway are functionally connected. A multiclass support vector machine was trained to recognize the gene expression phenotypes caused by these mutations. In several cases, unexpected phenotype assignments by the computer revealed functional roles for specific factors at multiple steps in the gene expression pathway. The ability to resolve gene expression pathway phenotypes provides insight into how the major machineries of gene expression communicate with each other.
Molecular and Cellular Biology | 2001
Stuart Murray; Rajesh Udupa; Sheng Yao; Grant A. Hartzog; Gregory Prelich
ABSTRACT BUR1, which was previously identified by a selection for mutations that have general effects on transcription inSaccharomyces cerevisiae, encodes a cyclin-dependent kinase that is essential for viability, but none of its substrates have been identified to date. Using an unbiased biochemical approach, we have identified the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II, as a Bur1 substrate. Phosphorylation of Rpb1 by Bur1 is likely to be physiologically relevant, sincebur1 mutations interact genetically with rpb1CTD truncations and with mutations in other genes involved in CTD function. Several genetic interactions are presented, implying a role for Bur1 during transcriptional elongation. These results identify Bur1 as a fourth S. cerevisiae CTD kinase and provide striking functional similarities between Bur1 and metazoan P-TEFb.
Biochimica et Biophysica Acta | 2013
Grant A. Hartzog; Jianhua Fu
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Genetics | 2010
Tiffani K. Quan; Grant A. Hartzog
Spt4–Spt5, a general transcription elongation factor for RNA polymerase II, also has roles in chromatin regulation. However, the relationships between these functions are not clear. Previously, we isolated suppressors of a Saccharomyces cerevisiae spt5 mutation in genes encoding members of the Paf1 complex, which regulates several cotranscriptional histone modifications, and Chd1, a chromatin remodeling enzyme. Here, we show that this suppression of spt5 can result from loss of histone H3 lysines 4 or 36 methylation, or reduced recruitment of Chd1 or the Rpd3S complex. These spt5 suppressors also rescue the synthetic growth defects observed in spt5 mutants that also lack elongation factor TFIIS. Using a FLO8 reporter gene, we found that a chd1 mutation caused cryptic initiation of transcription. We further observed enhancement of cryptic initiation in chd1 isw1 mutants and increased histone acetylation in a chd1 mutant. We suggest that, as previously proposed for H3 lysine 36 methylation and the Rpd3S complex, H3 lysine 4 methylation and Chd1 function to maintain normal chromatin structures over transcribed genes, and that one function of Spt4–Spt5 is to help RNA polymerase II overcome the repressive effects of these histone modifications and chromatin regulators on transcription.
Structure | 2008
Min Guo; Fei Xu; Jena Yamada; Thea A. Egelhofer; Yongxiang Gao; Grant A. Hartzog; Maikun Teng; Liwen Niu
The Spt4-Spt5 complex is an essential RNA polymerase II elongation factor found in all eukaryotes and important for gene regulation. We report here the crystal structure of Saccharomyces cerevisiae Spt4 bound to the NGN domain of Spt5. This structure reveals that Spt4-Spt5 binding is governed by an acid-dipole interaction between Spt5 and Spt4. Mutations that disrupt this interaction disrupt the complex. Residues forming this pivotal interaction are conserved in the archaeal homologs of Spt4 and Spt5, which we show also form a complex. Even though bacteria lack a Spt4 homolog, the NGN domains of Spt5 and its bacterial homologs are structurally similar. Spt4 is located at a position that may help to maintain the functional conformation of the following KOW domains in Spt5. This structural and evolutionary perspective of the Spt4-Spt5 complex and its homologs suggest that it is an ancient, core component of the transcription elongation machinery.
Biochimica et Biophysica Acta | 2002
Grant A. Hartzog; Jennifer L Speer; Derek L. Lindstrom
Chromatin forms a general, repeating barrier to elongation of transcripts by eukaryotic RNA polymerases. Recent studies of nucleosome structure and histone modifications reveal a set of likely mechanisms for control of elongation through chromatin. Genetic and biochemical studies of transcription have identified a set of accessory factors for transcript elongation by RNA polymerase II (Pol II) that appear to function in the context of chromatin. The C-terminal repeated domain (CTD) of Pol II may also play a role in regulating elongation through chromatin.
Current Opinion in Genetics & Development | 1997
Grant A. Hartzog; Fred Winston
Substantial evidence exists that nucleosomes affect transcription and that additional factors modify nucleosome function. Recent work has demonstrated that different types of histone mutants can be classified by their distinct effects on transcription in vivo. Additionally, the identification of proteins that interact with histones and, notably, of histone acetylases and deacetylases demonstrates that many factors are involved in controlling the role of histones in transcription in vivo.