Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant Dewson is active.

Publication


Featured researches published by Grant Dewson.


Cell | 2013

Bax Crystal Structures Reveal How Bh3 Domains Activate Bax and Nucleate its Oligomerization to Induce Apoptosis.

Peter E. Czabotar; Dana Westphal; Grant Dewson; Stephen Ma; Colin Hockings; W. Douglas Fairlie; Erinna F. Lee; Shenggen Yao; Adeline Y. Robin; Brian J. Smith; David C. S. Huang; Ruth M. Kluck; Jerry M. Adams; Peter M. Colman

In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each others surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis.


Biochimica et Biophysica Acta | 2011

Molecular biology of Bax and Bak activation and action.

Dana Westphal; Grant Dewson; Peter E. Czabotar; Ruth M. Kluck

Bax and Bak are two nuclear-encoded proteins present in higher eukaryotes that are able to pierce the mitochondrial outer membrane to mediate cell death by apoptosis. Thus, organelles recruited by nucleated cells to supply energy can be recruited by Bax and Bak to kill cells. The two proteins lie in wait in healthy cells where they adopt a globular α-helical structure, seemingly as monomers. Following a variety of stress signals, they convert into pore-forming proteins by changing conformation and assembling into oligomeric complexes in the mitochondrial outer membrane. Proteins from the mitochondrial intermembrane space then empty into the cytosol to activate proteases that dismantle the cell. The arrangement of Bax and Bak in membrane-bound complexes, and how the complexes porate the membrane, is far from being understood. However, recent data indicate that they first form symmetric BH3:groove dimers which can be linked via an interface between the α6-helices to form high order oligomers. Here, we review how Bax and Bak change conformation and oligomerize, as well as how oligomers might form a pore. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.


Cell | 2014

RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis

James A Rickard; Joanne A. O’Donnell; Joseph M Evans; Najoua Lalaoui; Ashleigh R. Poh; TeWhiti Rogers; James E. Vince; Kate E. Lawlor; Robert L. Ninnis; Holly Anderton; Cathrine Hall; Sukhdeep Kaur Spall; Toby J. Phesse; Helen E. Abud; Louise H. Cengia; Jason Corbin; Sandra Mifsud; Ladina Di Rago; Donald Metcalf; Matthias Ernst; Grant Dewson; Andrew W. Roberts; Warren S. Alexander; James M. Murphy; Paul G. Ekert; Seth L. Masters; David L. Vaux; Ben A. Croker; Motti Gerlic; John Silke

Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.


Molecular Cell | 2008

To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions.

Grant Dewson; Tobias Kratina; Huiyan W. Sim; Jerry M. Adams; Peter M. Colman; Ruth M. Kluck

The Bcl-2 relative Bak is thought to drive apoptosis by forming homo-oligomers that permeabilize mitochondria, but how it is activated and oligomerizes is unclear. To clarify these pivotal steps toward apoptosis, we have characterized multiple random loss-of-function Bak mutants and explored the mechanism of Bak conformation change during apoptosis. Single missense mutations located to the alpha helix 2-5 region of Bak, with most altering the BH3 domain or hydrophobic groove (BH1 domain). Loss of function invariably corresponded to impaired ability to oligomerize. An essential early step in Bak activation was shown to be exposure of the BH3 domain, which became reburied in dimers. We demonstrate that oligomerization involves insertion of the BH3 domain of one Bak molecule into the groove of another and may produce symmetric Bak dimers. We conclude that this BH3:groove interaction is essential to nucleate Bak oligomerization, which in turn is required for its proapoptotic function.


Journal of Cell Science | 2009

Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis

Grant Dewson; Ruth M. Kluck

Mitochondrial outer membrane permeabilisation (MOMP) is the point of no return in many forms of apoptotic cell death. The killing effect of MOMP is twofold; it both initiates a proteolytic cascade of pro-apoptotic enzymes and damages mitochondrial function. Accordingly, prevention of MOMP can rescue cells from death. It is clear that either Bak or Bax, which are Bcl-2 family members, are required for MOMP to occur; however, the pore complexes that are formed by Bak and Bax remain poorly defined in terms of their composition, size, number and structure, as well as the mechanism by which they are regulated by other Bcl-2 family members. We recently reported that a key step leading to Bak homo-oligomerisation following an apoptotic stimulus involves transient exposure of the Bak BH3 domain before it binds to the hydrophobic groove of another activated Bak molecule to form a novel symmetric dimer. To form the higher-order oligomers that probably constitute the apoptotic pore complex, Bak dimers then interact via regions away from the BH3 domain and groove. The BH3:groove interaction within Bak homodimers supports a general model to explain the associations between Bcl-2 family members. In this Commentary, we discuss the implications of these findings for the regulation of apoptosis by Bcl-2 family proteins.


Nature Immunology | 2007

Interleukin 15–mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1

Nicholas D. Huntington; Priscilla Gunn; Edwina Naik; Ewa M. Michalak; Mark J. Smyth; Hyacinth Tabarias; Mariapia A. Degli-Esposti; Grant Dewson; Simon N. Willis; Noboru Motoyama; David C. S. Huang; Stephen L. Nutt; David M. Tarlinton; Andreas Strasser

Interleukin 15 (IL-15) promotes the survival of natural killer (NK) cells by preventing apoptosis through mechanisms unknown at present. Here we identify Bim, Noxa and Mcl-1 as key regulators of IL-15-dependent survival of NK cells. IL-15 suppressed apoptosis by limiting Bim expression through the kinases Erk1 and Erk2 and mechanisms dependent on the transcription factor Foxo3a, while promoting expression of Mcl-1, which was necessary and sufficient for the survival of NK cells. Withdrawal of IL-15 led to upregulation of Bim and, accordingly, both Bim-deficient and Foxo3a−/− NK cells were resistant to cytokine deprivation. Finally, IL-15-mediated inactivation of Foxo3a and cell survival were dependent on phosphotidylinositol-3-OH kinase. Thus, IL-15 regulates the survival of NK cells at multiple steps, with Bim and Noxa being key antagonists of Mcl-1, the critical survivor factor in this process.


Molecular Cell | 2009

Bak Activation for Apoptosis Involves Oligomerization of Dimers via Their α6 Helices

Grant Dewson; Tobias Kratina; Peter E. Czabotar; Catherine L. Day; Jerry M. Adams; Ruth M. Kluck

A pivotal step toward apoptosis is oligomerization of the Bcl-2 relative Bak. We recently reported that its oligomerization initiates by insertion of an exposed BH3 domain into the groove of another Bak monomer. We now report that the resulting BH3:groove dimers can be converted to the larger oligomers that permeabilize mitochondria by an interface between alpha6 helices. Cysteine residues placed in alpha6 could be crosslinked only after apoptotic signaling. Cysteines placed at both interfaces established that the BH3:groove dimer is symmetric and that the alpha6:alpha6 interface can link these dimers into homo-oligomers containing at least 18 Bak molecules. A putative zinc-binding site in alpha6 was not required to form the alpha6:alpha6 interface, and its mutation in full-length Bak did not affect Bak conformation, oligomerization, or function. We conclude that alpha6:alpha6 interaction occurs during Bak oligomerization and proapoptotic function, but we find no evidence that zinc binding to that interface regulates apoptosis.


Cell Death & Differentiation | 2014

Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis

Dana Westphal; Ruth M. Kluck; Grant Dewson

The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different ‘modes’ by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.


Journal of Cell Biology | 2007

Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak

Rachel T. Uren; Grant Dewson; Lin Chen; Stephanie C. Coyne; David C. S. Huang; Jerry M. Adams; Ruth M. Kluck

The Bcl-2 family regulates apoptosis by controlling mitochondrial integrity. To clarify whether its prosurvival members function by sequestering their Bcl-2 homology 3 (BH3)–only ligands or their multidomain relatives Bak and Bax, we analyzed whether four prosurvival proteins differing in their ability to bind specific BH3 peptides or Bak could protect isolated mitochondria. Most BH3 peptides could induce temperature-dependent cytochrome c release, but permeabilization was prevented by Bcl-xl, Bcl-w, Mcl-1, or BHRF1. However, their protection correlated with the ability to bind Bak rather than the added BH3 peptide and could be overcome only by BH3 peptides that bind directly to the appropriate prosurvival member. Mitochondria protected by both Bcl-xl–like and Mcl-1 proteins were disrupted only by BH3 peptides that engage both. BH3-only reagents freed Bak from Bcl-xl and Mcl-1 in mitochondrial and cell lysates. The findings support a model for the control of apoptosis in which certain prosurvival proteins sequester Bak/Bax, and BH3-only proteins must neutralize all protective prosurvival proteins to allow Bak/Bax to induce mitochondrial disruption.


Cell Death & Differentiation | 2012

Bax dimerizes via a symmetric BH3:groove interface during apoptosis

Grant Dewson; Stephen Ma; Paul Frederick; Colin Hockings; Iris K. L. Tan; Tobias Kratina; Ruth M. Kluck

During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family.

Collaboration


Dive into the Grant Dewson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Hockings

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Strasser

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. S. Huang

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Erinna F. Lee

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Tobias Kratina

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge