Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant Eilers is active.

Publication


Featured researches published by Grant Eilers.


Modern Pathology | 2013

MED12 mutations in leiomyosarcoma and extrauterine leiomyoma

Gloria Ravegnini; Adrián Mariño-Enríquez; Jaime Slater; Grant Eilers; Yuexiang Wang; Meijun Zhu; Marisa R. Nucci; Suzanne George; Sabrina Angelini; Chandrajit P. Raut; Jonathan A. Fletcher

Leiomyoma and leiomyosarcoma share morphological features and smooth muscle differentiation, and both arise most frequently within the uterine corpus of middle-aged women. However, they are considered biologically unrelated tumors due to their disparate clinical, cytogenetic, and molecular features. MED12, the mediator complex subunit 12 gene, has been recently implicated as an oncogene in as many as 70% of sporadic uterine leiomyoma. In the present study, we show MED12 hotspot exon 2 mutations in extrauterine leiomyoma (3 of 19 cases) and in leiomyosarcoma (3 of 13 uterine cases). We also show that MED12 mutations are found in both primary and metastatic leiomyosarcoma. Immunoblotting studies demonstrated MED12 protein expression in 100% of leiomyomas (13) and leiomyosarcomas (20), irrespective of MED12 exon 2 mutation status or histological grade. These findings indicate that MED12 has oncogenic roles in a broad range of smooth muscle neoplasia, including tumors arising in extrauterine locations.


Nature Genetics | 2014

Dystrophin is a tumor suppressor in human cancers with myogenic programs

Yuexiang Wang; Adrián Mariño-Enríquez; Richard R. Bennett; Meijun Zhu; Yiping Shen; Grant Eilers; Jen-Chieh Lee; Joern Henze; Benjamin S. Fletcher; Zhizhan Gu; Edward A. Fox; Cristina R. Antonescu; Christopher D. M. Fletcher; Xiangqian Guo; Chandrajit P. Raut; George D. Demetri; Matt van de Rijn; Tamas Ordog; Louis M. Kunkel; Jonathan A. Fletcher

Many common human mesenchymal tumors, including gastrointestinal stromal tumor (GIST), rhabdomyosarcoma (RMS) and leiomyosarcoma (LMS), feature myogenic differentiation. Here we report that intragenic deletion of the dystrophin-encoding and muscular dystrophy–associated DMD gene is a frequent mechanism by which myogenic tumors progress to high-grade, lethal sarcomas. Dystrophin is expressed in the non-neoplastic and benign counterparts of GIST, RMS and LMS tumors, and DMD deletions inactivate larger dystrophin isoforms, including 427-kDa dystrophin, while preserving the expression of an essential 71-kDa isoform. Dystrophin inhibits myogenic sarcoma cell migration, invasion, anchorage independence and invadopodia formation, and dystrophin inactivation was found in 96%, 100% and 62% of metastatic GIST, embryonal RMS and LMS samples, respectively. These findings validate dystrophin as a tumor suppressor and likely anti-metastatic factor, suggesting that therapies in development for muscular dystrophies may also have relevance in the treatment of cancer.


Clinical Cancer Research | 2014

Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients.

Andrew Paul Garner; Joseph M. Gozgit; Rana Anjum; Sadanand Vodala; Alexa Schrock; Tianjun Zhou; César Serrano; Grant Eilers; Meijun Zhu; Julia Ketzer; Scott Wardwell; Yaoyu Ning; Youngchul Song; Anna Kohlmann; Frank Wang; Tim Clackson; Michael C. Heinrich; Jonathan A. Fletcher; Sebastian Bauer; Victor M. Rivera

Purpose: KIT is the major oncogenic driver of gastrointestinal stromal tumors (GIST). Imatinib, sunitinib, and regorafenib are approved therapies; however, efficacy is often limited by the acquisition of polyclonal secondary resistance mutations in KIT, with those located in the activation (A) loop (exons 17/18) being particularly problematic. Here, we explore the KIT-inhibitory activity of ponatinib in preclinical models and describe initial characterization of its activity in patients with GIST. Experimental Design: The cellular and in vivo activities of ponatinib, imatinib, sunitinib, and regorafenib against mutant KIT were evaluated using an accelerated mutagenesis assay and a panel of engineered and GIST-derived cell lines. The ponatinib–KIT costructure was also determined. The clinical activity of ponatinib was examined in three patients with GIST previously treated with all three FDA-approved agents. Results: In engineered and GIST-derived cell lines, ponatinib potently inhibited KIT exon 11 primary mutants and a range of secondary mutants, including those within the A-loop. Ponatinib also induced regression in engineered and GIST-derived tumor models containing these secondary mutations. In a mutagenesis screen, 40 nmol/L ponatinib was sufficient to suppress outgrowth of all secondary mutants except V654A, which was suppressed at 80 nmol/L. This inhibitory profile could be rationalized on the basis of structural analyses. Ponatinib (30 mg daily) displayed encouraging clinical activity in two of three patients with GIST. Conclusion:Ponatinib possesses potent activity against most major clinically relevant KIT mutants and has demonstrated preliminary evidence of activity in patients with refractory GIST. These data strongly support further evaluation of ponatinib in patients with GIST. Clin Cancer Res; 20(22); 5745–55. ©2014 AACR.


Cancer Research | 2013

DOG1 regulates growth and IGFBP5 in gastrointestinal stromal tumors

Susanne Simon; Florian Grabellus; Loretta Ferrera; Luis J. V. Galietta; Benjamin Schwindenhammer; Thomas Mühlenberg; G. Taeger; Grant Eilers; Juergen Treckmann; Frank Breitenbuecher; Martin Schuler; Takahiro Taguchi; Jonathan A. Fletcher; Sebastian Bauer

Gastrointestinal stromal tumors (GIST) are characterized by activating mutations of KIT or platelet-derived growth factor receptor α(PDGFRA), which can be therapeutically targeted by tyrosine kinase inhibitors (TKI) such as imatinib. Despite long-lasting responses, most patients eventually progress after TKI therapy. The calcium-dependent chloride channel DOG1 (ANO1/TMEM16A), which is strongly and specifically expressed in GIST, is used as a diagnostic marker to differentiate GIST from other sarcomas. Here, we report that loss of DOG1 expression occurs together with loss of KIT expression in a subset of GIST resistant to KIT inhibitors, and we illustrate the functional role of DOG1 in tumor growth, KIT expression, and imatinib response. Although DOG1 is a crucial regulator of chloride balance in GIST cells, we found that RNAi-mediated silencing or pharmacologic inhibition of DOG1 did not alter cell growth or KIT signaling in vitro. In contrast, DOG1 silencing delayed the growth of GIST xenografts in vivo. Expression profiling of explanted tumors after DOG1 blockade revealed a strong upregulation in the expression of insulin-like growth factor-binding protein 5 (IGFBP5), a potent antiangiogenic factor implicated in tumor suppression. Similar results were obtained after selection of imatinib-resistant DOG1- and KIT-negative cells derived from parental DOG1 and KIT-positive GIST cells, where a 5,000-fold increase in IGFBP5 mRNA transcripts were documented. In summary, our findings establish the oncogenic activity of DOG1 in GIST involving modulation of IGF/IGF receptor signaling in the tumor microenvironment through the antiangiogenic factor IGFBP5.


British Journal of Cancer | 2014

Multipoint targeting of the PI3K/mTOR pathway in mesothelioma

Sha Zhou; Lili Liu; Hongbin Li; Grant Eilers; Yin Kuang; Suozhu Shi; Zhang Chun Yan; Xiaoguang Li; Joseph M. Corson; Fanci Meng; Hua Zhou; Qinsong Sheng; Jonathan A. Fletcher; W-b Ou

Background:Mesothelioma is a notoriously chemotherapy-resistant neoplasm, as is evident in the dismal overall survival for patients with those of asbestos-associated disease. We previously demonstrated co-activation of multiple receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), MET, and AXL in mesothelioma cell lines, suggesting that these kinases could serve as novel therapeutic targets. Although clinical trials have not shown activity for EGFR inhibitors in mesothelioma, concurrent inhibition of various activated RTKs has pro-apoptotic and anti-proliferative effects in mesothelioma cell lines. Thus, we hypothesised that a coordinated network of multi-RTK activation contributes to mesothelioma tumorigenesis.Methods:Activation of PI3K/AKT/mTOR, Raf/MAPK, and co-activation of RTKs were evaluated in mesotheliomas. Effects of RTK and downstream inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, apoptosis, activation of signalling intermediates, expression of cell-cycle checkpoints, and cell-cycle alterations.Results:We demonstrate activation of the PI3K/AKT/p70S6K and RAF/MEK/MAPK pathways in mesothelioma, but not in non-neoplastic mesothelial cells. The AKT activation, but not MAPK activation, was dependent on coordinated activation of RTKs EGFR, MET, and AXL. In addition, PI3K/AKT/mTOR pathway inhibition recapitulated the anti-proliferative effects of concurrent inhibition of EGFR, MET, and AXL. Dual targeting of PI3K/mTOR by BEZ235 or a combination of RAD001 and AKT knockdown had a greater effect on mesothelioma proliferation and viability than inhibition of individual activated RTKs or downstream signalling intermediates. Inhibition of PI3K/AKT was also associated with MDM2-p53 cell-cycle regulation.Conclusions:These findings show that PI3K/AKT/mTOR is a crucial survival pathway downstream of multiple activated RTKs in mesothelioma, underscoring that PI3K/mTOR is a compelling target for therapeutic intervention.


Modern Pathology | 2014

Frequent expression of KIT in endometrial stromal sarcoma with YWHAE genetic rearrangement

Cheng-Han Lee; Lien N Hoang; Stephen Yip; Carolina Reyes; Adrián Mariño-Enríquez; Grant Eilers; Derrick Tao; Sarah Chiang; Jonathan A. Fletcher; Robert A. Soslow; Marisa R. Nucci; Esther Oliva

Endometrial stromal sarcomas with the YWHAE-NUTM2A/B genetic fusion characteristically contain high-grade round to epithelioid cell component that is strongly and diffusely cyclin D1-positive and it may or may not show an associated low-grade fibroblastic/myxoid cell component. They are clinically more aggressive than endometrial stromal sarcomas with the JAZF1-SUZ12 genetic fusion and frequently demonstrate extrauterine extension at initial clinical presentation. In this setting, the tumor may be misdiagnosed as gastrointestinal stromal tumor. This study examines the expression of KIT and ANO1 in 14 YWHAE-NUTM2A/B tumors by immunohistochemistry. Staining localization was determined as membranous and/or cytoplasmic, and the staining intensity was assessed (negative, weak, moderate and strong). Of the 14 tumors, 6 contained only a high-grade round cell component, 2 only a low-grade fibroblastic component and 6 had both components in the slides evaluated. The high-grade round cell component displayed moderate to strong membranous/cytoplasmic KIT staining in all tumors (12 of 12). The low-grade fibroblastic cell component showed only weak cytoplasmic KIT staining in 3 of 8 tumors. In contrast, ANO1 was negative in all 14 neoplasms, irrespective of the component evaluated. Sanger sequencing analysis (exons 9, 11, 13 and 17) and Ampliseq Cancer Panel mutation screen (Ion Torrent) demonstrated no KIT mutations in three KIT-positive YWHAE-NUTM2A/B tumors. This study shows that the high-grade round cell component of YWHAE-NUTM2A/B endometrial stromal sarcoma consistently expresses KIT but lacks KIT hotspot mutations. KIT expression may represent a potential diagnostic pitfall in the evaluation of YWHAE-NUTM2A/B endometrial stromal sarcoma presenting with pelvic/abdominal mass, particularly in situations where its uterine origin is not definitive, and thus a panel of antibodies that includes ANO1 and cyclin D1 is necessary.


Oncogene | 2014

Genome-wide functional screening identifies CDC37 as a crucial HSP90-cofactor for KIT oncogenic expression in gastrointestinal stromal tumors.

Adrián Mariño-Enríquez; Wen-Bin Ou; Glenn S. Cowley; Biao Luo; Anneliene H. Jonker; Mark Mayeda; Michael Okamoto; Grant Eilers; Jeffrey T. Czaplinski; Ewa Sicinska; Yuexiang Wang; Takahiro Taguchi; George D. Demetri; David E. Root; Jonathan A. Fletcher

Most gastrointestinal stromal tumors (GISTs) contain KIT or PDGFRA kinase gain-of-function mutations, and therefore respond clinically to imatinib and other tyrosine kinase inhibitor (TKI) therapies. However, clinical progression subsequently results from selection of TKI-resistant clones, typically containing secondary mutations in the KIT kinase domain, which can be heterogeneous between and within GIST metastases in a given patient. TKI-resistant KIT oncoproteins require HSP90 chaperoning and are potently inactivated by HSP90 inhibitors, but clinical applications in GIST patients are constrained by the toxicity resulting from concomitant inactivation of various other HSP90 client proteins, beyond KIT and PDGFRA. To identify novel targets responsible for KIT oncoprotein function, we performed parallel genome-scale short hairpin RNA (shRNA)-mediated gene knockdowns in KIT-mutant GIST-T1 and GIST882. GIST cells were infected with a lentiviral shRNA pooled library targeting 11 194 human genes, and allowed to proliferate for 5–7 weeks, at which point assessment of relative hairpin abundance identified the HSP90 cofactor, CDC37, as one of the top six GIST-specific essential genes. Validations in treatment-naive (GIST-T1, GIST882) vs imatinib-resistant GISTs (GIST48, GIST430) demonstrated that: (1) CDC37 interacts with oncogenic KIT; (2) CDC37 regulates expression and activation of KIT and downstream signaling intermediates in GIST; and (3) unlike direct HSP90 inhibition, CDC37 knockdown accomplishes prolonged KIT inhibition (>20 days) in GIST. These studies highlight CDC37 as a key biologic vulnerability in both imatinib-sensitive and imatinib-resistant GIST. CDC37 targeting is expected to be selective for KIT/PDGFRA and a subset of other HSP90 clients, and thereby represents a promising strategy for inactivating the myriad KIT/PDGFRA oncoproteins in TKI-resistant GIST patients.


Molecular Cancer Therapeutics | 2015

CDKN2A/p16 loss implicates CDK4 as a therapeutic target in imatinib-resistant dermatofibrosarcoma protuberans

Grant Eilers; Jeffrey T. Czaplinski; Mark Mayeda; Nacef Bahri; Derrick Tao; Meijun Zhu; Jason L. Hornick; Neal I. Lindeman; Ewa Sicinska; Andrew J. Wagner; Jonathan A. Fletcher; Adrián Mariño-Enríquez

Dermatofibrosarcoma protuberans (DFSP) is an aggressive PDGFB-dependent cutaneous sarcoma characterized by infiltrative growth and frequent local recurrences. Some DFSP progress to a higher-grade fibrosarcomatous form, with rapid growth and increased risk of metastasis. Imatinib provides clinical benefit in approximately 50% of patients with unresectable or metastatic DFSP. However, efficacious medical therapies have not been developed for imatinib-resistant DFSP. We established a model of imatinib-resistant DFSP and evaluated CDK4/6 inhibition as a genomically credentialed targeted therapy. DFSP105, an imatinib-resistant human cell line, was established from a fibrosarcomatous DFSP (FS-DFSP), and was studied by SNP arrays and sequencing to identify targetable genomic alterations. Findings were validated in vitro and in vivo, and confirmed in a series including 12 DFSP and 6 FS-DFSP. SNP analysis of DFSP105 revealed a homozygous deletion encompassing CDKN2A and CDKN2B. The resultant p16 loss implicated CDK4/6 as a potential therapeutic target in DFSP. We further demonstrated CDKN2A homozygous deletion in 1 of 12 conventional DFSP and 2 of 6 FS-DFSP, whereas p16 expression was lost in 4 of 18 DFSP. In vitro treatment of DFSP105 with two structurally distinct selective CDK4/6 inhibitors, PD-0332991 and LEE011, led to inhibition of RB1 phosphorylation and inhibition of proliferation (GI50 160 nmol/L and 276 nmol/L, respectively). In vivo treatment of DFSP105 with PD-0332991 (150 mg/kg) inhibited xenograft growth in mice, in comparison with imatinib-treated or -untreated tumors. In conclusion, CDKN2A deletion can contribute to DFSP progression. CDK4/6 inhibition is a preclinically effective treatment against p16-negative, imatinib-resistant FS-DFSP, and should be evaluated as a therapeutic strategy in patients with unresectable or metastatic imatinib-resistant DFSP. Mol Cancer Ther; 14(6); 1346–53. ©2015 AACR.


Journal of Applied Toxicology | 2015

Toxicity induced by Basic Violet 14, Direct Red 28 and Acid Red 26 in zebrafish larvae

Bing Shen; Hong-Cui Liu; Wen-Bin Ou; Grant Eilers; Shengmei Zhou; Fanguo Meng; Chun-Qi Li; Yong-Quan Li

Basic Violet 14, Direct Red 28 and Acid Red 26 are classified as carcinogenic dyes in the European textile ecology standard, despite insufficient toxicity data. In this study, the toxicity of these dyes was assessed in a zebrafish model, and the underlying toxic mechanisms were investigated. Basic Violet 14 and Direct Red 28 showed acute toxicity with a LC50 value at 60.63 and 476.84 µg ml–1, respectively, whereas the LC50 of Acid Red 26 was between 2500 and 2800 µg ml–1. Treatment with Basic Violet 14, Direct Red 28 and Acid Red 26 resulted in common developmental abnormalities including delayed yolk sac absorption and swimming bladder deflation. Hepatotoxicity was observed in zebrafish treated with Basic Violet 14, and cardiovascular toxicity was found in zebrafish treated with Acid Red 26 at concentrations higher than 2500 µg ml–1. Basic Violet 14 also caused significant up‐regulation of GCLC gene expression in a dose‐dependent manner whereas Acid Red 26 induced significant up‐regulation of NKX2.5 and down‐regulation of GATA4 at a high concentration in a dose‐dependent manner. These results suggest that Basic Violet 14, Direct Red 28 and Acid Red 26 induce developmental and organ‐specific toxicity, and oxidative stress may play a role in the hepatotoxicity of Basic Violet 14, the suppressed GATA4 expression may have a relation to the cardiovascular toxicity of Acid Red 26. Copyright


British Journal of Cancer | 2016

Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53

Wen-Bin Ou; Minmin Lu; Grant Eilers; Hailong Li; Jiongyan Ding; Xuli Meng; Yuehong Wu; Quan He; Qing Sheng; Hai-Meng Zhou; Jonathan A. Fletcher

Background:Improved mesothelioma patient survival will require development of novel and more effective pharmacological interventions. TP53 genomic mutations are uncommon in mesothelioma, and recent data indicate that p53 remains functional, and therefore is a potential therapeutic target in these cancers. In addition, the tumour suppressor NF2 is inactivated by genomic mechanisms in more than 80% of mesothelioma, causing upregulation of FAK activity. Because FAK is a negative regulator of p53, NF2 regulation of FAK–p53–MDM2 signalling loops were evaluated.Methods:Interactions of FAK–p53 or NF2–FAK were evaluated by phosphotyrosine-p53 immunoaffinity purification and tandem mass spectrometry, and p53, FAK, and NF2 immunoprecipitations. Activation and/or expression of FAK, p53, and NF2 were also evaluated in mesotheliomas. Effects of combination MDM2 and FAK inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, expression of cell cycle checkpoints, and cell cycle alterations.Results:We observed constitutive activation of FAK, a known negative regulator of p53, in each of 10 mesothelioma cell lines and each of nine mesothelioma surgical specimens, and FAK was associated with p53 in five of five mesothelioma cell lines. In four mesotheliomas with wild-type p53, FAK silencing by RNAi induced expression and phosphorylation of p53. However, FAK regulation of mesothelioma proliferation was not restricted to p53-dependent pathways, as demonstrated by immunoblots after FAK knockdown in JMN1B mesothelioma cells, which have mutant/inactivated p53, compared with four mesothelioma cell lines with nonmutant p53. Additive effects were obtained through a coordinated reactivation of p53, by FAK knockdown/inhibition and MDM2 inhibition, as demonstrated by immunoblots, cell viability, and cell-cycle analyses, showing increased p53 expression, apoptosis, anti-proliferative effects, and cell-cycle arrest, as compared with either intervention alone. Our results also indicate that NF2 regulates the interaction of FAK–p53 and MDM2–p53.Conclusions:These findings highlight novel therapeutic opportunities in mesothelioma.

Collaboration


Dive into the Grant Eilers's collaboration.

Top Co-Authors

Avatar

Jonathan A. Fletcher

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Meijun Zhu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen-Bin Ou

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandrajit P. Raut

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge