Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant M. Zane is active.

Publication


Featured researches published by Grant M. Zane.


Applied and Environmental Microbiology | 2010

Effect of the Deletion of qmoABC and the Promoter-Distal Gene Encoding a Hypothetical Protein on Sulfate Reduction in Desulfovibrio vulgaris Hildenborough

Grant M. Zane; Huei-Che Bill Yen; Judy D. Wall

ABSTRACT The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion in Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo (quinone-interacting membrane-bound oxidoreductase) complex is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5′-phosphosulfate reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for the DVU0851 protein. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as the terminal electron acceptor. Complementation of the Δ(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.


Frontiers in Microbiology | 2014

Genetic basis for nitrate resistance in Desulfovibrio strains

Hannah L. Korte; Samuel R. Fels; Geoff A. Christensen; Morgan N. Price; Jennifer V. Kuehl; Grant M. Zane; Adam M. Deutschbauer; Adam P. Arkin; Judy D. Wall

Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Erosion of functional independence early in the evolution of a microbial mutualism

Kristina L. Hillesland; Sujung Lim; Jason J. Flowers; Serdar Turkarslan; Nicolás Pinel; Grant M. Zane; Nicholas Elliott; Yujia Qin; Liyou Wu; Nitin S. Baliga; Jizhong Zhou; Judy D. Wall; David A. Stahl

Significance Nature is full of species that cooperate in mutually beneficial interactions to survive. Some are completely dependent on such relationships. How and why does this specialization evolve? We show that as the bacterium Desulfovibrio vulgaris evolved for 1,000 generations in conditions forcing cooperation with the archaeon Methanococcus maripaludis, it lost a key metabolic trait that would be required for it to grow alone in most environments. Large subpopulations lacking the capacity to respire sulfate evolved in 13 of 21 replicates. Such striking parallel evolution suggests a trade-off between performance in the mutualistic environment and maintaining the flexibility to survive alone. This result may explain why sulfate reducers share a common ancestor with many species specialized for cooperation with methanogens. Many species have evolved to function as specialized mutualists, often to the detriment of their ability to survive independently. However, there are few, if any, well-controlled observations of the evolutionary processes underlying the genesis of new mutualisms. Here, we show that within the first 1,000 generations of initiating independent syntrophic interactions between a sulfate reducer (Desulfovibrio vulgaris) and a hydrogenotrophic methanogen (Methanococcus maripaludis), D. vulgaris frequently lost the capacity to grow by sulfate respiration, thus losing the primary physiological attribute of the genus. The loss of sulfate respiration was a consequence of mutations in one or more of three key genes in the pathway for sulfate respiration, required for sulfate activation (sat) and sulfate reduction to sulfite (apsA or apsB). Because loss-of-function mutations arose rapidly and independently in replicated experiments, and because these mutations were correlated with enhanced growth rate and productivity, gene loss could be attributed to natural selection, even though these mutations should significantly restrict the independence of the evolved D. vulgaris. Together, these data present an empirical demonstration that specialization for a mutualistic interaction can evolve by natural selection shortly after its origin. They also demonstrate that a sulfate-reducing bacterium can readily evolve to become a specialized syntroph, a situation that may have often occurred in nature.


Applied and Environmental Microbiology | 2013

Rapid Transposon Liquid Enrichment Sequencing (TnLE-seq) for Gene Fitness Evaluation in Underdeveloped Bacterial Systems

Samuel R. Fels; Grant M. Zane; Sean M. Blake; Judy D. Wall

ABSTRACT Whole-genome fitness analysis in microbes that uses saturating transposon mutagenesis combined with massively parallel sequencing (Tn-seq) is providing a measure of the contribution of each gene to a given growth condition. With this technique, gene fitness profiles and essential genes are discovered by simultaneous analyses of whether the absence of each gene product alters the growth kinetics of the bacterium. Here we modify the standard Tn-seq procedure to simplify and shorten the process by including delivery of the transposon through conjugation and liquid culture enrichment of the mutant pool, creating transposon liquid enrichment sequencing (TnLE-seq). To illustrate the success of these modifications and the robustness of the procedure, analyses of gene fitness of two cultures of the strictly anaerobic bacterium Desulfovibrio vulgaris Hildenborough were performed, with growth on lactate as the electron donor and sulfate as the electron acceptor. These data demonstrate reproducibility and provide a base condition for analysis of fitness changes in deletion mutants and in various growth conditions. The procedural modifications will facilitate the application of this powerful genetic analysis to microbes lacking a facile genetic system. Pilot studies produced 2.5 × 105 and 3.4 × 105 unique insertion mutants in the anaerobe Desulfovibrio vulgaris Hildenborough grown under typical laboratory conditions in rich medium. These analyses provided two similar high-resolution maps of gene fitness across the genome, and the method was also applied to growth in minimal medium. These results were also compared to the coverage obtained with a ca. 13,000-member cataloged transposon library constructed by sequencing transposon insertion sites in individual mutants.


Applied and Environmental Microbiology | 2012

Functional Characterization of Crp/Fnr-Type Global Transcriptional Regulators in Desulfovibrio vulgaris Hildenborough

Aifen Zhou; Yunyu I. Chen; Grant M. Zane; Zhili He; Christopher L. Hemme; Marcin P. Joachimiak; Jason K. Baumohl; Qiang He; Matthew W. Fields; Adam P. Arkin; Judy D. Wall; Terry C. Hazen; Jizhong Zhou

ABSTRACT Crp/Fnr-type global transcriptional regulators regulate various metabolic pathways in bacteria and typically function in response to environmental changes. However, little is known about the function of four annotated Crp/Fnr homologs (DVU0379, DVU2097, DVU2547, and DVU3111) in Desulfovibrio vulgaris Hildenborough. A systematic study using bioinformatic, transcriptomic, genetic, and physiological approaches was conducted to characterize their roles in stress responses. Similar growth phenotypes were observed for the crp/fnr deletion mutants under multiple stress conditions. Nevertheless, the idea of distinct functions of Crp/Fnr-type regulators in stress responses was supported by phylogeny, gene transcription changes, fitness changes, and physiological differences. The four D. vulgaris Crp/Fnr homologs are localized in three subfamilies (HcpR, CooA, and cc). The crp/fnr knockout mutants were well separated by transcriptional profiling using detrended correspondence analysis (DCA), and more genes significantly changed in expression in a ΔDVU3111 mutant (JW9013) than in the other three paralogs. In fitness studies, strain JW9013 showed the lowest fitness under standard growth conditions (i.e., sulfate reduction) and the highest fitness under NaCl or chromate stress conditions; better fitness was observed for a ΔDVU2547 mutant (JW9011) under nitrite stress conditions and a ΔDVU2097 mutant (JW9009) under air stress conditions. A higher Cr(VI) reduction rate was observed for strain JW9013 in experiments with washed cells. These results suggested that the four Crp/Fnr-type global regulators play distinct roles in stress responses of D. vulgaris. DVU3111 is implicated in responses to NaCl and chromate stresses, DVU2547 in nitrite stress responses, and DVU2097 in air stress responses.


Journal of Bacteriology | 2012

Deletion of the Desulfovibrio vulgaris Carbon Monoxide Sensor Invokes Global Changes in Transcription

Lara Rajeev; Kristina L. Hillesland; Grant M. Zane; Aifen Zhou; Marcin P. Joachimiak; Zhili He; Jizhong Zhou; Adam P. Arkin; Judy D. Wall; David A. Stahl

The carbon monoxide-sensing transcriptional factor CooA has been studied only in hydrogenogenic organisms that can grow using CO as the sole source of energy. Homologs for the canonical CO oxidation system, including CooA, CO dehydrogenase (CODH), and a CO-dependent Coo hydrogenase, are present in the sulfate-reducing bacterium Desulfovibrio vulgaris, although it grows only poorly on CO. We show that D. vulgaris Hildenborough has an active CO dehydrogenase capable of consuming exogenous CO and that the expression of the CO dehydrogenase, but not that of a gene annotated as encoding a Coo hydrogenase, is dependent on both CO and CooA. Carbon monoxide did not act as a general metabolic inhibitor, since growth of a strain deleted for cooA was inhibited by CO on lactate-sulfate but not pyruvate-sulfate. While the deletion strain did not accumulate CO in excess, as would have been expected if CooA were important in the cycling of CO as a metabolic intermediate, global transcriptional analyses suggested that CooA and CODH are used during normal metabolism.


Nature | 2018

Mutant phenotypes for thousands of bacterial genes of unknown function

Morgan N. Price; R. Jordan Waters; Mark Callaghan; Jayashree Ray; Hualan Liu; Jennifer V. Kuehl; Ryan A. Melnyk; Jacob S. Lamson; Yumi Suh; Hans K. Carlson; Zuelma Esquivel; Harini Sadeeshkumar; Romy Chakraborty; Grant M. Zane; Benjamin E. Rubin; Judy D. Wall; Axel Visel; James Bristow; Matthew J. Blow; Adam P. Arkin; Adam M. Deutschbauer

One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because they are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.A large-scale mutagenesis screen identifies mutant phenotypes for over 11,000 protein-coding genes in bacteria that had previously not been assigned a specific function.


PLOS ONE | 2011

Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough

Swapnil R. Chhabra; Marcin P. Joachimiak; Christopher J. Petzold; Grant M. Zane; Morgan N. Price; Sonia A. Reveco; Veronica Fok; Alyssa R. Johanson; Tanveer S. Batth; Mary E. Singer; John-Marc Chandonia; Dominique Joyner; Terry C. Hazen; Adam P. Arkin; Judy D. Wall; Anup K. Singh; Jay D. Keasling

Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.


Applied and Environmental Microbiology | 2011

Generalized Schemes for High-Throughput Manipulation of the Desulfovibrio vulgaris Genome

Swapnil R. Chhabra; Gareth Butland; Dwayne A. Elias; John-Marc Chandonia; O.-Y. Fok; Tr Juba; A. Gorur; Simon Allen; C. M. Leung; Kimberly L. Keller; Sonia A. Reveco; Grant M. Zane; E. Semkiw; R. Prathapam; B. Gold; Mary E. Singer; M. Ouellet; Evelin Szakal; Danielle M. Jorgens; Morgan N. Price; Witkowska He; Harry R. Beller; Adam P. Arkin; Terry C. Hazen; Mark D. Biggin; Manfred Auer; Judy D. Wall; Jay D. Keasling

ABSTRACT The ability to conduct advanced functional genomic studies of the thousands of sequenced bacteria has been hampered by the lack of available tools for making high-throughput chromosomal manipulations in a systematic manner that can be applied across diverse species. In this work, we highlight the use of synthetic biological tools to assemble custom suicide vectors with reusable and interchangeable DNA “parts” to facilitate chromosomal modification at designated loci. These constructs enable an array of downstream applications, including gene replacement and the creation of gene fusions with affinity purification or localization tags. We employed this approach to engineer chromosomal modifications in a bacterium that has previously proven difficult to manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of over 700 strains. Furthermore, we demonstrate how these modifications can be used for examining metabolic pathways, protein-protein interactions, and protein localization. The ubiquity of suicide constructs in gene replacement throughout biology suggests that this approach can be applied to engineer a broad range of species for a diverse array of systems biological applications and is amenable to high-throughput implementation.


Frontiers in Microbiology | 2013

Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c3

Min Sub Sim; David T. Wang; Grant M. Zane; Judy D. Wall; Tanja Bosak; Shuhei Ono

The sulfur isotope effect produced by sulfate reducing microbes is commonly used to trace biogeochemical cycles of sulfur and carbon in aquatic and sedimentary environments. To test the contribution of intracellular coupling between carbon and sulfur metabolisms to the overall magnitude of the sulfur isotope effect, this study compared sulfur isotope fractionations by mutants of Desulfovibrio vulgaris Hildenborough. We tested mutant strains lacking one or two periplasmic (Hyd, Hyn-1, Hyn-2, and Hys) or cytoplasmic hydrogenases (Ech and CooL), and a mutant lacking type I tetraheme cytochrome (TpI-c3). In batch culture, wild-type D. vulgaris and its hydrogenase mutants had comparable growth kinetics and produced the same sulfur isotope effects. This is consistent with the reported redundancy of hydrogenases in D. vulgaris. However, the TpI-c3 mutant (ΔcycA) exhibited slower growth and sulfate reduction rates in batch culture, and produced more H2 and an approximately 50% larger sulfur isotope effect, compared to the wild type. The magnitude of sulfur isotope fractionation in the CycA deletion strain, thus, increased due to the disrupted coupling of the carbon oxidation and sulfate reduction pathways. In continuous culture, wild-type D. vulgaris and the CycA mutant produced similar sulfur isotope effects, underscoring the influence of environmental conditions on the relative contribution of hydrogen cycling to the electron transport. The large sulfur isotope effects associated with the non-ideal stoichiometry of sulfate reduction in this study imply that simultaneous fermentation and sulfate reduction may be responsible for some of the large naturally-occurring sulfur isotope effects. Overall, mutant strains provide a powerful tool to test the effect of specific redox proteins and pathways on sulfur isotope fractionation.

Collaboration


Dive into the Grant M. Zane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam P. Arkin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgan N. Price

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam M. Deutschbauer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David A. Stahl

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Aindrila Mukhopadhyay

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge