Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grazia Cottone is active.

Publication


Featured researches published by Grazia Cottone.


Journal of the American Chemical Society | 2010

Mapping the Network of Pathways of CO Diffusion in Myoglobin

Luca Maragliano; Grazia Cottone; Giovanni Ciccotti; Eric Vanden-Eijnden

The pathways of diffusion of a CO molecule inside a myoglobin protein and toward the solvent are investigated. Specifically, the three-dimensional potential of mean force (PMF or free energy) of the CO molecule position inside the protein is calculated by using the single-sweep method in concert with fully resolved atomistic simulations in explicit solvent. The results are interpreted under the assumption that the diffusion of the ligand can be modeled as a navigation on the PMF in which the ligand hops between the PMF local minima following the minimum free energy paths (MFEPs) with rates set by the free energy barriers that need to be crossed. Here, all the local minima of the PMF, the MFEPs, and the barriers along them are calculated. The positions of the local minima are in good agreement with all the known binding cavities inside the protein, which indicates that these cavities may indeed serve as dynamical traps inside the protein and thereby influence the binding process. In addition, the MFEPs connecting the local PMF minima show a complicated network of possible pathways of exit of the dissociated CO starting from the primary docking site, in which the histidine gate is the closest exit from the binding site for the ligand but it is not the only possible one.


Journal of Chemical Physics | 2002

Protein–trehalose–water structures in trehalose coated carboxy-myoglobin

Grazia Cottone; Giovanni Ciccotti; Lorenzo Cordone

Some organisms can survive complete dehydration and/or high temperature in a state of suspended animation called anydrobiosis, in which all metabolic processes are “switched off” however, upon rehydration, their normal life cycle is restored, without formation of irreversible damages. A common feature of these organisms, when in anhydrobiosis, is the presence of large amounts of sugar, particularly trehalose, which has been found to protect most effectively biomaterials. Several studies have attempted to understand how trehalose interacts with biomolecules. To address this problem, we performed molecular dynamics simulations of carboxy-myoglobin embedded in a trehalose aqueous solution and in a trehalose–water plasticized amorphous matrix. The results show that, in an aqueous solution, trehalose is excluded from the protein domain. This behavior extends also to the trehalose–water plasticized amorphous matrix, where we find sugar–water–protein structures with more water molecules that those derived from s...


Nature Communications | 2015

Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser.

Matteo Levantino; Giorgio Schirò; Henrik T. Lemke; Grazia Cottone; J. M. Glownia; Diling Zhu; Mathieu Chollet; Hyotcherl Ihee; Antonio Cupane; Marco Cammarata

Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.


Proteins | 2005

Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin

Grazia Cottone; Sergio Giuffrida; Giovanni Ciccotti; Lorenzo Cordone

We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy‐myoglobin (MbCO) molecule in a sucrose–water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose–water–MbCO simulation (Cottone et al., Biophys J 2001;80:931–938). Results show that, as for trehalose, the amplitude of protein atomic mean‐square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose‐ and trehalose‐coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415–15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein–solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein–matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415–15421). Proteins 2005.


Journal of Physical Chemistry B | 2011

Protein Thermal Denaturation and Matrix Glass Transition in Different Protein−Trehalose−Water Systems

Giuseppe Bellavia; Sergio Giuffrida; Grazia Cottone; Antonio Cupane; Lorenzo Cordone

Biopreservation by saccharides is a widely studied issue due to its scientific and technological importance; in particular, ternary amorphous protein-saccharide-water systems are extensively exploited to model the characteristics of the in vivo biopreservation process. We present here a differential scanning calorimetry (DSC) study on amorphous trehalose-water systems with embedded different proteins (myoglobin, lysozyme, BSA, hemoglobin), which differ for charge, surface, and volume properties. In our study, the protein/trehalose molar ratio is kept constant at 1/40, while the water/sugar molar ratio is varied between 2 and 300; results are compared with those obtained for binary trehalose-water systems. DSC upscans offer the possibility of investigating, in the same measurement, the thermodynamic properties of the matrix (glass transition, T(g)) and the functional properties of the encapsulated protein (thermal denaturation, T(den)). At high-to-intermediate hydration, the presence of the proteins increases the glass transition temperature of the encapsulating matrix. The effect mainly depends on size properties, and it can be ascribed to confinement exerted by the protein on the trehalose-water solvent. Conversely, at low hydration, lower T(g) values are measured in the presence of proteins: the lack of water promotes sugar-protein interactions, thus weakening the confinement effect and softening the matrix with respect to the binary system. A parallel T(den) increase is also observed; remarkably, this stabilization can reach ∼70 K at low hydration, a finding potentially of high biotechnological relevance. A linear relationship between T(g) and T(den) is also observed, in line with previous results; this finding suggests that collective water-trehalose interactions, responsible for the glass transition, also influence the protein denaturation.


Journal of Physics: Condensed Matter | 2007

Role of residual water hydrogen bonding in sugar/water/biomolecule systems: a possible explanation for trehalose peculiarity

Lorenzo Cordone; Grazia Cottone; Sergio Giuffrida

We report on the set of experimental and simulative evidences which enabled us to suggest how biological structures embedded in a non-liquid water–saccharide solvent are anchored to the surrounding matrix via a hydrogen bond network. Such a network, whose rigidity increases by decreasing the sample water content, couples the degrees of freedom of the biostructure to those of the matrix and gives place to protein–saccharide–water structures (protein–solvent conformational substates). In particular, the whole set of data evidences that, while the protein–sugar interaction is well described in terms of a water entrapment hypothesis, the water replacement hypothesis better describes the sugar–membrane interaction; furthermore, it gives a hint towards the understanding of the origin of the trehalose peculiarity since the biomolecule–matrix coupling, specific to each particular sugar, always results in being the tightest for trehalose. In line with the heterogeneous dynamics in supercooled fluids and in carbohydrate glasses of different residual water contents, recent results confirm, at the single molecule level, the existence of protein–solvent conformational substates, spatially heterogeneous and interconverting, whose rigidity increases by lowering the sample hydration.


Journal of Physical Chemistry B | 2009

Thermal denaturation of myoglobin in water--disaccharide matrixes: relation with the glass transition of the system.

Giuseppe Bellavia; Grazia Cottone; Sergio Giuffrida; Antonio Cupane; Lorenzo Cordone

Proteins embedded in glassy saccharide systems are protected against adverse environmental conditions [Crowe et al. Annu. Rev. Physiol. 1998, 60, 73-103]. To further characterize this process, we studied the relationship between the glass transition temperature of the protein-containing saccharide system (T(g)) and the temperature of thermal denaturation of the embedded protein (T(den)). To this end, we studied by differential scanning calorimetry the thermal denaturation of ferric myoglobin in water/disaccharide mixtures containing nonreducing (trehalose, sucrose) or reducing (maltose, lactose) disaccharides. All the samples studied are, at room temperature, liquid systems whose viscosity varies from very low to very large values, depending on the water content. At a high water/saccharide mole ratio, homogeneous glass formation does not occur; regions of glass form, whose T(g) does not vary by varying the saccharide content, and the disaccharide barely affects the myoglobin denaturation temperature. At a suitably low water/saccharide mole ratio, by lowering the temperature, the systems undergo transition to the glassy state whose T(g) is determined by the water content; the Gordon-Taylor relationship between T(g) and the water/disaccharide mole ratio is obeyed; and T(den) increases by decreasing the hydration regardless of the disaccharide, such effect being entropy-driven. The presence of the protein was found to lower the T(g). Furthermore, for nonreducing disaccharides, plots of T(den) vs T(g) give linear correlations, whereas for reducing disaccharides, data exhibit an erratic behavior below a critical water/disaccharide ratio. We ascribe this behavior to the likelihood that in the latter samples, proteins have undergone Maillard reaction before thermal denaturation.


Chemical Physics Letters | 2000

Ab initio study on the photoisomers of a nitro-substituted spiropyran

Grazia Cottone; Rosina Noto; Gianfranco La Manna; Sandro L. Fornili

Structural and spectroscopic properties of the photoisomers of a nitro-substituted spiropyran have been investigated by performing ab initio molecular orbital (MO) calculations both in vacuo and in hexafluoro-2-propanol solution. Full geometry optimisation of the closed form and of the transoid conformations of the open form has been carried out. Dipole moments of both photoisomers have been determined, the ratio of which agrees with recent experimental results. Net atomic charges have also been determined according to three different approaches.


Biophysical Journal | 2004

Atomic mean-square displacements in proteins by molecular dynamics: a case for analysis of variance.

Luca Maragliano; Grazia Cottone; Lorenzo Cordone; Giovanni Ciccotti

Information on protein internal motions is usually obtained through the analysis of atomic mean-square displacements, which are a measure of variability of the atomic positions distribution functions. We report a statistical approach to analyze molecular dynamics data on these displacements that is based on probability distribution functions. Using a technique inspired by the analysis of variance, we compute unbiased, reliable mean-square displacements of the atoms and analyze them statistically. We applied this procedure to characterize protein thermostability by comparing the results for a thermophilic enzyme and a mesophilic homolog. In agreement with previous experimental observations, our analysis suggests that the proteins surface regions can play a role in the different thermal behavior.


PLOS ONE | 2014

Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics.

Zeynab Mohammad Hosseini Naveh; Thérèse E. Malliavin; Luca Maragliano; Grazia Cottone; Giovanni Ciccotti

Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit.

Collaboration


Dive into the Grazia Cottone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Ciccotti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Maragliano

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Longo

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge