Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graziano Martello is active.

Publication


Featured researches published by Graziano Martello.


Nature Reviews Molecular Cell Biology | 2010

MicroRNA control of signal transduction

Masafumi Inui; Graziano Martello; Stefano Piccolo

MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-β, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.


Cell | 2010

A MicroRNA Targeting Dicer for Metastasis Control

Graziano Martello; Antonio Rosato; Francesco Ferrari; Andrea Manfrin; Michelangelo Cordenonsi; Sirio Dupont; Elena Enzo; Vincenza Guzzardo; Maria Rondina; Thomas Spruce; Anna Parenti; Maria Grazia Daidone; Silvio Bicciato; Stefano Piccolo

Although specific microRNAs (miRNAs) can be upregulated in cancer, global miRNA downregulation is a common trait of human malignancies. The mechanisms of this phenomenon and the advantages it affords remain poorly understood. Here we identify a microRNA family, miR-103/107, that attenuates miRNA biosynthesis by targeting Dicer, a key component of the miRNA processing machinery. In human breast cancer, high levels of miR-103/107 are associated with metastasis and poor outcome. Functionally, miR-103/107 confer migratory capacities in vitro and empower metastatic dissemination of otherwise nonaggressive cells in vivo. Inhibition of miR-103/107 opposes migration and metastasis of malignant cells. At the cellular level, a key event fostered by miR-103/107 is induction of epithelial-to-mesenchymal transition (EMT), attained by downregulating miR-200 levels. These findings suggest a new pathway by which Dicer inhibition drifts epithelial cancer toward a less-differentiated, mesenchymal fate to foster metastasis.


Cell | 2009

FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination

Sirio Dupont; Anant Mamidi; Michelangelo Cordenonsi; Marco Montagner; Luca Zacchigna; Maddalena Adorno; Graziano Martello; Michael J. Stinchfield; Sandra Soligo; Leonardo Morsut; Masafumi Inui; Stefano Moro; Nicola Modena; Francesco Argenton; Stuart J. Newfeld; Stefano Piccolo

The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.


Cell Stem Cell | 2012

Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal

Graziano Martello; Toshimi Sugimoto; Evangelia Diamanti; Anagha Joshi; Rebecca Hannah; Satoshi Ohtsuka; Berthold Göttgens; Hitoshi Niwa; Austin Smith

Summary Inhibition of glycogen synthase kinase-3 (Gsk3) supports mouse embryonic stem cells (ESCs) by modulating Tcf3, but the critical targets downstream of Tcf3 are unclear. We analyzed the intersection between genome localization and transcriptome data sets to identify genes repressed by Tcf3. Among these, manipulations of Esrrb gave distinctive phenotypes in functional assays. Knockdown and knockout eliminated response to Gsk3 inhibition, causing extinction of pluripotency markers and loss of colony forming capability. Conversely, forced expression phenocopied Gsk3 inhibition or Tcf3 deletion by suppressing differentiation and sustaining self-renewal. Thus the nuclear receptor Esrrb is necessary and sufficient to mediate self-renewal downstream of Gsk3 inhibition. Leukaemia inhibitory factor (LIF) regulates ESCs through Stat3, independently of Gsk3 inhibition. Consistent with parallel operation, ESCs in LIF accommodated Esrrb deletion and remained pluripotent. These findings highlight a key role for Esrrb in regulating the naive pluripotent state and illustrate compensation among the core pluripotency factors.


Nature | 2007

MicroRNA control of Nodal signalling.

Graziano Martello; Luca Zacchigna; Masafumi Inui; Marco Montagner; Maddalena Adorno; Anant Mamidi; Leonardo Morsut; Sandra Soligo; Uyen Tran; Sirio Dupont; Michelangelo Cordenonsi; Oliver Wessely; Stefano Piccolo

MicroRNAs are crucial modulators of gene expression, yet their involvement as effectors of growth factor signalling is largely unknown. Ligands of the transforming growth factor-β superfamily are essential for development and adult tissue homeostasis. In early Xenopus embryos, signalling by the transforming growth factor-β ligand Nodal is crucial for the dorsal induction of the Spemann’s organizer. Here we report that Xenopus laevis microRNAs miR-15 and miR-16 restrict the size of the organizer by targeting the Nodal type II receptor Acvr2a. Endogenous miR-15 and miR-16 are ventrally enriched as they are negatively regulated by the dorsal Wnt/β-catenin pathway. These findings exemplify the relevance of microRNAs as regulators of early embryonic patterning acting at the crossroads of fundamental signalling cascades.


Science | 2014

Defining an essential transcription factor program for naïve pluripotency

Sara-Jane Dunn; Graziano Martello; Boyan Yordanov; Stephen Emmott; Austin Smith

Predicting stem cell renewal or differentiation Predicting complex mammalian cell behavior is extremely challenging. Dunn et al. developed a computational model that predicts when embryonic stem cells will self-renew or differentiate. The model revealed an essential program governing pluripotency and identifies a minimal set of components and interactions that accurately predict responses to genetic perturbation. Science, this issue p. 1156 Iterative experimental and computational analysis reveals a simple molecular program for embryonic stem cell self-renewal. The gene regulatory circuitry through which pluripotent embryonic stem (ES) cells choose between self-renewal and differentiation appears vast and has yet to be distilled into an executive molecular program. We developed a data-constrained, computational approach to reduce complexity and to derive a set of functionally validated components and interaction combinations sufficient to explain observed ES cell behavior. This minimal set, the simplest version of which comprises only 16 interactions, 12 components, and three inputs, satisfies all prior specifications for self-renewal and furthermore predicts unknown and nonintuitive responses to compound genetic perturbations with an overall accuracy of 70%. We propose that propagation of ES cell identity is not determined by a vast interactome but rather can be explained by a relatively simple process of molecular computation.


Annual Review of Cell and Developmental Biology | 2014

The Nature of Embryonic Stem Cells

Graziano Martello; Austin Smith

Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.


Nature Cell Biology | 2011

USP15 is a deubiquitylating enzyme for receptor-activated SMADs

Masafumi Inui; Andrea Manfrin; Anant Mamidi; Graziano Martello; Leonardo Morsut; Sandra Soligo; Elena Enzo; Stefano Moro; Simona Polo; Sirio Dupont; Michelangelo Cordenonsi; Stefano Piccolo

The TGFβ pathway is critical for embryonic development and adult tissue homeostasis. On ligand stimulation, TGFβ and BMP receptors phosphorylate receptor-activated SMADs (R-SMADs), which then associate with SMAD4 to form a transcriptional complex that regulates gene expression through specific DNA recognition. Several ubiquitin ligases serve as inhibitors of R-SMADs, yet no deubiquitylating enzyme (DUB) for these molecules has so far been identified. This has left unexplored the possibility that ubiquitylation of R-SMADs is reversible and engaged in regulating SMAD function, in addition to degradation. Here we identify USP15 as a DUB for R-SMADs. USP15 is required for TGFβ and BMP responses in mammalian cells and Xenopus embryos. At the biochemical level, USP15 primarily opposes R-SMAD monoubiquitylation, which targets the DNA-binding domains of R-SMADs and prevents promoter recognition. As such, USP15 is critical for the occupancy of endogenous target promoters by the SMAD complex. These data identify an additional layer of control by which the ubiquitin system regulates TGFβ biology.


The EMBO Journal | 2013

Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor

Graziano Martello; Paul Bertone; Austin Smith

Self‐renewal of pluripotent mouse embryonic stem (ES) cells is sustained by the cytokine leukaemia inhibitory factor (LIF) acting through the transcription factor Stat3. Several targets of Stat3 have previously been identified, most notably the reprogramming factor Klf4. However, such factors are neither required nor sufficient for the potent effect of LIF. We took advantage of Stat3 null ES cells to confirm that Stat3 mediates the self‐renewal response to LIF. Through comparative transcriptome analysis intersected with genome location data, we arrived at a set of candidate transcription factor effectors. Among these, Tfcp2l1 (also known as Crtr‐1) was most abundant. Constitutive expression of Tfcp2l1 at levels similar to those induced by LIF effectively substituted for LIF or Stat3 in sustaining clonal self‐renewal and pluripotency. Conversely, knockdown of Tfcp2l1 profoundly compromised responsiveness to LIF. We further found that Tfcp2l1 is both necessary and sufficient to direct molecular reprogramming of post‐implantation epiblast stem cells to naïve pluripotency. These results establish Tfcp2l1 as the principal bridge between LIF/Stat3 input and the transcription factor core of naïve pluripotency.


The EMBO Journal | 2016

Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency

Elena Carbognin; Riccardo M Betto; Maria Eugenia Soriano; Austin Smith; Graziano Martello

Transcription factor Stat3 directs self‐renewal of pluripotent mouse embryonic stem (ES) cells downstream of the cytokine leukemia inhibitory factor (LIF). Stat3 upregulates pivotal transcription factors in the ES cell gene regulatory network to sustain naïve identity. Stat3 also contributes to the rapid proliferation of ES cells. Here, we show that Stat3 increases the expression of mitochondrial‐encoded transcripts and enhances oxidative metabolism. Chromatin immunoprecipitation reveals that Stat3 binds to the mitochondrial genome, consistent with direct transcriptional regulation. An engineered form of Stat3 that localizes predominantly to mitochondria is sufficient to support enhanced proliferation of ES cells, but not to maintain their undifferentiated phenotype. Furthermore, during reprogramming from primed to naïve states of pluripotency, Stat3 similarly upregulates mitochondrial transcripts and facilitates metabolic resetting. These findings suggest that the potent stimulation of naïve pluripotency by LIF/Stat3 is attributable to parallel and synergistic induction of both mitochondrial respiration and nuclear transcription factors.

Collaboration


Dive into the Graziano Martello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Smith

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge