Graziele Pereira Oliveira
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graziele Pereira Oliveira.
Journal of Virology | 2016
Thalita Souza Arantes; Rodrigo Araújo Lima Rodrigues; Ludmila Karen dos Santos Silva; Graziele Pereira Oliveira; Helton Luís de Souza; Jacques Bou Khalil; Danilo Bretas de Oliveira; Alice A. Torres; Luis Lamberti P. da Silva; Philippe Colson; Erna Geessien Kroon; Flávio Guimarães da Fonseca; Cláudio A. Bonjardim; Bernard La Scola; Jônatas Santos Abrahão
ABSTRACT Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described. IMPORTANCE Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba. Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses.
Viruses | 2015
Graziele Pereira Oliveira; Felipe L. Assis; Gabriel Magno de Freitas Almeida; Jonas Dutra Albarnaz; Maurício Lima; Ana Cláudia dos Santos Pereira Andrade; Rafael Calixto; Cairo Henrique Sousa de Oliveira; José Diomedes Neto; Giliane de Souza Trindade; Paulo César Peregrino Ferreira; Erna Geessien Kroon; Jônatas Santos Abrahão
Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment.
Archives of Virology | 2017
Lara Ambrósio L. Dutra; Gabriel Magno de Freitas Almeida; Graziele Pereira Oliveira; Jônatas Santos Abrahão; Erna Geessien Kroon; Giliane de Souza Trindade
Vaccinia virus (VACV) is responsible for outbreaks in Brazil and has immense potential as an emerging virus. VACV can be found naturally circulating in India, Pakistan and South America, where it causes infections characterised by exanthematic lesions in buffaloes, cattle and humans. The transmission cycle of Brazilian VACV has still not been fully characterised; one of the most important gaps in knowledge being the role of wild animals. Capybaras, which are restricted to the Americas, are the world’s largest rodents and have peculiar characteristics that make them possible candidates for being part of a natural VACV reservoir. Here, we developed a method for detecting orthopoxvirus DNA in capybara stool samples, and have described for the first time the detection of orthopoxvirus DNA in capybaras samples from three different regions in Brazil. These findings strongly suggest that capybaras might be involved in the natural transmission cycle of VACV and furthermore represent a public health problem, when associated with Brazilian bovine vaccinia outbreaks. This makes infected animals an important factor to be considered when predicting and managing Brazilian VACV outbreaks.
American Journal of Tropical Medicine and Hygiene | 2014
Graziele Pereira Oliveira; André Tavares da Silva Fernandes; Felipe L. Assis; Pedro Augusto Alves; Ana Paula Moreira Franco Luiz; Leandra Barcelos Figueiredo; Cláudia Maria Costa de Almeida; Carlos Eurico Pires Ferreira Travassos; Giliane de Souza Trindade; Jônatas Santos Abrahão; Erna Geessien Kroon
Bovine vaccinia (BV) is an emerging zoonosis caused by the Vaccinia virus (VACV), genus Orthopoxvirus (OPV), Poxviridae family. In general, human cases are related to direct contact with sick cattle but there is a lack of information about human-to-human transmission of VACV during BV outbreaks. In this study, we epidemiologically and molecularly show a case of VACV transmission between humans in São Francisco de Itabapoana County, Rio de Janeiro state. Our group collected samples from the patients, a 49-year-old patient and his son. Our results showed that patients had developed anti-OPV IgG or IgM antibodies and presented neutralizing antibodies against OPV. The VACV isolates displayed high identity (99.9%) and were grouped in the same phylogenetic tree branch. Our data indicate that human-to-human VACV transmission occurred during a BV outbreak, raising new questions about the risk factors of the VACV transmission chain.
Current protocols in microbiology | 2016
Erna Geessien Kroon; Jônatas Santos Abrahão; Giliane de Souza Trindade; Graziele Pereira Oliveira; Ana Paula Moreira Franco Luiz; Galileu Barbosa Costa; Maurício Lima; Rafael Calixto; Danilo Bretas de Oliveira; Betânia Paiva Drumond
Natural infections of Vaccinia virus (VACV)—the prototype species of the Orthopoxvirus genus, from the family Poxviridae and subfamily Chordopoxvirinae—cause an occupational emergent zoonotic disease that is primarily associated with the handling of infected dairy cattle. In humans, VACV infection is characterized by skin lesions, primarily on the hands, and accompanied by systemic symptoms such as fever, myalgia, headache, and lymphadenopathy. The diagnosis of VACV is usually performed according to the methods described for other orthopoxviruses. This unit describes the methods utilized to obtain clinical samples, the serological and molecular techniques used for diagnosis, and the isolation methods and techniques used for molecular and biological characterization of the viruses.
Viruses | 2017
Graziele Pereira Oliveira; Ana Cláudia dos Santos Pereira Andrade; Rodrigo Araújo Lima Rodrigues; Thalita Souza Arantes; Paulo V. M. Boratto; Ludmila Karen dos Santos Silva; Fábio P. Dornas; Giliane de Souza Trindade; Betânia Paiva Drumond; Bernard La Scola; Erna Geessien Kroon; Jônatas Santos Abrahão
For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations.
Journal of Virology | 2017
Ana Cláudia dos Santos Pereira Andrade; Rodrigo Araújo Lima Rodrigues; Graziele Pereira Oliveira; Kétyllen Reis Andrade; Cláudio A. Bonjardim; Bernard La Scola; Erna Geessien Kroon; Jônatas Santos Abrahão
ABSTRACT Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus. IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle.
Journal of Virology | 2017
Graziele Pereira Oliveira; Maurício Lima; Thalita Souza Arantes; Felipe L. Assis; Rodrigo Araújo Lima Rodrigues; Flávio Guimarães da Fonseca; Cláudio A. Bonjardim; Erna Geessien Kroon; Philippe Colson; Bernard La Scola; Jônatas Santos Abrahão
ABSTRACT Viruses display a wide range of genomic profiles and, consequently, a variety of gene expression strategies. Specific sequences associated with transcriptional processes have been described in viruses, and putative promoter motifs have been elucidated for some nucleocytoplasmic large DNA viruses (NCLDV). Among NCLDV, the Marseilleviridae is a well-recognized family because of its genomic mosaicism. The marseilleviruses have an ability to incorporate foreign genes, especially from sympatric organisms inhabiting Acanthamoeba, its main known host. Here, we identified for the first time an eight-nucleotide A/T-rich promoter sequence (AAATATTT) associated with 55% of marseillevirus genes that is conserved in all marseilleviruses lineages, a higher level of conservation than that of any giant virus described to date. We instigated our prediction about the promoter motif by biological assays and by evaluating how single mutations in this octamer can impact gene expression. The investigation of sequences that regulate the expression of genes relative to lateral transfer revealed that the promoter motifs do not appear to be incorporated by marseilleviruses from donor organisms. Indeed, analyses of the intergenic regions that regulate lateral gene transfer-related genes have revealed an independent origin of the marseillevirus intergenic regions that does not match gene-donor organisms. About 50% of AAATATTT motifs spread throughout intergenic regions of the marseilleviruses are present as multiple copies. We believe that such multiple motifs are associated with increased expression of a given gene or are related to incorporation of foreign genes into the mosaic genome of marseilleviruses. IMPORTANCE The marseilleviruses draw attention because of the peculiar features of their genomes; however, little is known about their gene expression patterns or the factors that regulate those expression patterns. The limited published research on the expression patterns of the marseilleviruses and their unique genomes has led us to study the promoter motif sequences in the intergenic regions of the marseilleviruses. This work is the first to analyze promoter sequences in the genomes of the marseilleviruses. We also suggest a strong capacity to acquire foreign genes and to express those genes mediated by multiple copies of the promoter motifs available in intergenic regions. These findings contribute to an understanding of genomic expansion and plasticity observed in these giant viruses.
Viruses | 2017
Rafael Calixto; Graziele Pereira Oliveira; Maurício Lima; Ana Cláudia dos Santos Pereira Andrade; Giliane de Souza Trindade; Danilo de Oliveira; Erna Geessien Kroon
Vaccinia virus (VACV) is the etiological agent of bovine vaccinia (BV), an emerging zoonosis that has been associated with economic losses and social effects. Despite increasing reports of BV outbreaks in Brazil, little is known about the biological interactions of Brazilian VACV (VACV-BR) isolates during coinfections; furthermore, there are no tools for the diagnosis of these coinfections. In this study, a tool to co-detect two variants of VACV was developed to provide new information regarding the pathogenesis, virulence profile, and viral spread during coinfection with VACV-BR isolates. To test the quantitative polymerase chain reactions (qPCR) tool, groups of BALB/c mice were intranasally monoinfected with Pelotas virus 1—Group II (PV1-GII) and Pelotas virus 2—Group I (PV2-GI), or were coinfected with PV1-GII and PV2-GI. Clinical signs of the mice were evaluated and the viral load in lung and spleen were detected using simultaneous polymerase chain reactions (PCR) targeting the A56R (hemagglutinin) gene of VACV. The results showed that qPCR for the quantification of viral load in coinfection was efficient and highly sensitive. Coinfected mice presented more severe disease and a higher frequency of VACV detection in lung and spleen, when compared to monoinfected groups. This study is the first description of PV1 and PV2 pathogenicity during coinfection in mice, and provides a new method to detect VACV-BR coinfections.
Current protocols in microbiology | 2016
Jônatas Santos Abrahão; Graziele Pereira Oliveira; Lorena Christine Ferreira da Silva; Ludmila Karen dos Santos Silva; Erna Geessien Kroon; Bernard La Scola
The aim of this protocol is to describe the replication, purification, and titration of mimiviruses. These viruses belong to the Mimiviridae family, the first member of which was isolated in 1992 from a cooling tower water sample collected during an outbreak of pneumonia in a hospital in Bradford, England. In recent years, several new mimiviruses have been isolated from different environmental conditions. These giant viruses are easily replicated in amoeba of the Acanthamoeba genus, its natural host. Mimiviruses present peculiar features that make them unique viruses, such as the particle and genome size and the genomes complexity. The discovery of these viruses rekindled discussions about their origin and evolution, and the genetic and structural complexity opened up a new field of study. Here, we describe some methods utilized for mimiviruses replication, purification, and titration.
Collaboration
Dive into the Graziele Pereira Oliveira's collaboration.
Ana Cláudia dos Santos Pereira Andrade
Universidade Federal de São João del-Rei
View shared research outputs