Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grazina Tautvaisiene is active.

Publication


Featured researches published by Grazina Tautvaisiene.


Astronomy and Astrophysics | 2014

The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release

S. Mikolaitis; V. Hill; A. Recio Blanco; P. de Laverny; C. Allende Prieto; G. Kordopatis; Grazina Tautvaisiene; D. Romano; G. Gilmore; S. Randich; Sofia Feltzing; G. Micela; A. Vallenari; Emilio J. Alfaro; Thomas Bensby; A. Bragaglia; E. Flaccomio; A. C. Lanzafame; E. Pancino; R. Smiljanic; Maria Bergemann; Giovanni Carraro; M. T. Costado; F. Damiani; A. Hourihane; P. Jofre; C. Lardo; L. Magrini; E. Maiorca; L. Morbidelli

Aims. Until recently, most high-resolution spectroscopic studies of the Galactic thin and thick discs were mostly confined to objects in the solar vicinity. Here we aim at enlarging the volume in which individual chemical abundances are used to characterise the thin and thick discs, using the first internal data release of the Gaia-ESO survey (GES iDR1). Methods. We used the spectra of around 2000 FGK dwarfs and giants from the GES iDR1, obtained at resolutions of up to R similar to 20 000 with the FLAMES/GIRAFFE spectrograph. We derive and discuss the abundances of eight elements (Mg, Al, Si, Ca, Ti, Fe, Cr, Ni, and Y). Results. We show that the trends of these elemental abundances with iron are very similar to those in the solar neighbourhood. We find a natural division between alpha-rich and alpha-poor stars, best seen in the bimodality of the [Mg/M] distributions in bins of metallicity, which we attribute to thick-and thin-disc sequences, respectively. This separation is visible for most alpha-elements and for aluminium. With the possible exception of Al, the observed dispersion around the trends is well described by the expected errors, leaving little room for astrophysical dispersion. Using previously derived distances from the first paper from this series for our sample, we further find that the thick-disc is more extended vertically and is more centrally concentrated towards the inner Galaxy than the thin-disc, which indicates a shorter scale-length. We derive the radial (4 to 12 kpc) and vertical (0 to 3.5 kpc) gradients in metallicity, iron, four alpha-element abundances, and aluminium for the two populations, taking into account the identified correlation between R-GC and vertical bar Z vertical bar. Similarly to other works, a radial metallicity gradient is found in the thin disc. The positive radial individual [alpha/M] gradients found are at variance from the gradients observed in the RAVE survey. The thin disc also hosts a negative vertical metallicity gradient in the solar cylinder, accompanied by positive individual [alpha/M] and [Al/M] gradients. The thick-disc, on the other hand, presents no radial metallicity gradient, a shallower vertical metallicity gradient than the thin-disc, an alpha-elements-to-iron radial gradient in the opposite sense than that of the thin disc, and positive vertical individual [alpha/M] and [Al/M] gradients. We examine several thick-disc formation scenarii in the light of these radial and vertical trends.


Astronomy and Astrophysics | 2014

The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705

T. Cantat-Gaudin; A. Vallenari; S. Zaggia; A. Bragaglia; R. Sordo; Janet E. Drew; J. Eisloeffel; H. J. Farnhill; E. Gonzalez-Solares; R. Greimel; M. J. Irwin; A. Küpcü-Yoldaş; C. Jordi; R. Blomme; L. Sampedro; M. T. Costado; Emilio J. Alfaro; R. Smiljanic; L. Magrini; P. Donati; Eileen D. Friel; Heather R. Jacobson; U. Abbas; D. Hatzidimitriou; A. Spagna; Alberto Vecchiato; L. Balaguer-Núñez; C. Lardo; M. Tosi; E. Pancino

Context. Chemically inhomogeneous populations are observed in most globular clusters, but not in open clusters. Cluster mass seems to play a key role in the existence of multiple populations. Aims. Studying the chemical homogeneity of the most massive open clusters is needed to better understand the mechanism of their formation and determine the mass limit under which clusters cannot host multiple populations. Here we studied NGC 6705, which is a young and massive open cluster located towards the inner region of the Milky Way. This cluster is located inside the solar circle. This makes it an important tracer of the inner disk abundance gradient. Methods. This study makes use of BVI and ri photometry and comparisons with theoretical isochrones to derive the age of NGC 6705. We study the density profile of the cluster and the mass function to infer the cluster mass. Based on abundances of the chemical elements distributed in the first internal data release of the Gaia-ESO Survey, we study elemental ratios and the chemical homogeneity of the red clump stars. Radial velocities enable us to study the rotation and internal kinematics of the cluster. Results. The estimated ages range from 250 to 316 Myr, depending on the adopted stellar model. Luminosity profiles and mass functions show strong signs of mass segregation. We derive the mass of the cluster from its luminosity function and from the kinematics, finding values between 3700 M-circle dot and 11 000 M-circle dot. After selecting the cluster members from their radial velocities, we obtain a metallicity of [Fe/H] = 0.10 +/- 0.06 based on 21 candidate members. Moreover, NGC 6705 shows no sign of the typical correlations or anti-correlations between Al, Mg, Si, and Na, which are expected in multiple populations. This is consistent with our cluster mass estimate, which is lower than the required mass limit proposed in the literature to develop multiple populations.


Astronomy and Astrophysics | 2014

The Gaia-ESO Survey: Abundance ratios in the inner-disk open clusters Trumpler 20, NGC 4815, NGC 6705

L. Magrini; S. Randich; D. Romano; Eileen D. Friel; A. Bragaglia; R. Smiljanic; Heather R. Jacobson; A. Vallenari; M. Tosi; L. Spina; P. Donati; E. Maiorca; T. Cantat-Gaudin; R. Sordo; Maria Bergemann; F. Damiani; Grazina Tautvaisiene; S. Blanco-Cuaresma; F. M. Jiménez-Esteban; D. Geisler; Nami Mowlavi; C. Muñoz; I. San Roman; Caroline Soubiran; Sandro Villanova; S. Zaggia; G. Gilmore; Martin Asplund; Sofia Feltzing; R. D. Jeffries

Context. Open clusters are key tools to study the spatial distribution of abundances in the disk and their evolution with time. Aims. Using the first release of stellar parameters and abundances of the Gaia-ESO Survey, we analyse the chemical properties of stars in three old/intermediate-age open clusters, namely NGC 6705, NGC 4815, and Trumpler 20, which are all located in the inner part of the Galactic disk at Galactocentric radius R-GC similar to 7 kpc. We aim to prove their homogeneity and to compare them with the field population. Methods. We study the abundance ratios of elements belonging to two different nucleosynthetic channels: alpha-elements and iron-peak elements. For each element, we analyse the internal chemical homogeneity of cluster members, and we compare the cumulative distributions of cluster abundance ratios with those of solar neighbourhood turn-off stars and of inner-disk/bulge giants. We compare the abundance ratios of field and cluster stars with two chemical evolution models that predict different alpha-enhancement dependences on the Galactocentric distance due to different assumptions on the infall and star-formation rates. Results. The main results can be summarised as follows: i) cluster members are chemically homogeneous within 3 sigma in all analysed elements; ii) the three clusters have comparable [El/Fe] patterns within similar to 1 sigma, but they differ in their global metal content [El/H] with NGC 4815 having the lowest metallicity; their [El/Fe] ratios show differences and analogies with those of the field population, in both the solar neighbourhood and the bulge/inner disk; iii) comparing the abundance ratios with the results of two chemical evolution models and with field star abundance distributions, we find that the abundance ratios of Mg, Ni, and Ca in NGC 6705 might require an inner birthplace, implying a subsequent variation in its R-GC during its lifetime, which is consistent with previous orbit determination. Conclusions. Using the results of the first internal data release, we show the potential of the Gaia-ESO Survey through a homogeneous and detailed analysis of the cluster versus field populations to reveal the chemical structure of our Galaxy using a completely uniform analysis of different populations. We verify that the Gaia-ESO Survey data are able to identify the unique chemical properties of each cluster by pinpointing the composition of the interstellar medium at the epoch and place of formation. The full dataset of the Gaia-ESO Survey is a superlative tool to constrain the chemical evolution of our Galaxy by disentangling different formation and evolution scenarios.


Astronomy and Astrophysics | 2015

The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters

L. Magrini; S. Randich; P. Donati; A. Bragaglia; V. Adibekyan; D. Romano; R. Smiljanic; S. Blanco-Cuaresma; Grazina Tautvaisiene; Eileen D. Friel; J. Overbeek; Heather R. Jacobson; T. Cantat-Gaudin; A. Vallenari; R. Sordo; E. Pancino; D. Geisler; I. San Roman; Sandro Villanova; Andrew R. Casey; A. Hourihane; C. C. Worley; P. Francois; G. Gilmore; Thomas Bensby; E. Flaccomio; A. Korn; A. Recio-Blanco; Giovanni Carraro; M. T. Costado

Context. The inner disc, which links the thin disc with the bulge, has been somewhat neglected in the past because of the intrinsic difficulties in its study, among which crowding and high extinction. Open clusters located in the inner disc are among the best tracers of its chemistry at different ages and distances. Aims. We analyse the chemical patterns of four open clusters located within 7 kpc of the Galactic centre and of field stars to infer the properties of the inner disc with the Gaia-ESO survey idr2/3 data release. Methods. We derive the parameters of the newly observed cluster, Berkeley 81, finding an age of about 1 Gyr and a Galactocentric distance of similar to 5.4 kpc. We construct the chemical patterns of clusters and we compare them with those of field stars in the solar neighbourhood and in the inner-disc samples. Results. Comparing the three populations we observe that inner-disc clusters and field stars are both, on average, enhanced in [O/Fe], [Mg/Fe], and [Si/Fe]. Using the idr2/3 results of M67, we estimate the non-local thermodynamic equilibrium (NLTE) effect on the abundances of Mg and Si in giant stars. After empirically correcting for NLTE effects, we note that NGC 6705 and Be 81 still have a high [alpha/Fe]. Conclusions. The location of the four open clusters and of the field population reveals that the evolution of the metallicity [Fe/H] and of [alpha/Fe] can be explained within the framework of a simple chemical evolution model: both [Fe/H] and [alpha/Fe] of Trumpler 20 and of NGC 4815 are in agreement with expectations from a simple chemical evolution model. On the other hand, NGC 6705, and to a lesser degree Berkeley 81, have higher [alpha/Fe] than expected for their ages, location in the disc, and metallicity. These differences might originate from local enrichment processes as explained in the inhomogeneous evolution framework.


Astronomy and Astrophysics | 2015

Testing the chemical tagging technique with open clusters

S. Blanco-Cuaresma; Caroline Soubiran; Ulrike Heiter; Martin Asplund; Giovanni Carraro; M. T. Costado; Sofia Feltzing; J.I. González-Hernández; F. Jimenez-Esteban; A. Korn; A. F. Marino; D. Montes; I. San Roman; H. M. Tabernero; Grazina Tautvaisiene

Context. Stars are born together from giant molecular clouds and, if we assume that the priors were chemically homogeneous and well-mixed, we expect them to share the same chemical composition. Most of the stellar aggregates are disrupted while orbiting the Galaxy and most of the dynamic information is lost, thus the only possibility of reconstructing the stellar formation history is to analyze the chemical abundances that we observe today. Aims. The chemical tagging technique aims to recover disrupted stellar clusters based merely on their chemical composition. We evaluate the viability of this technique to recover co-natal stars that are no longer gravitationally bound. Methods. Open clusters are co-natal aggregates that have managed to survive together. We compiled stellar spectra from 31 old and intermediate-age open clusters, homogeneously derived atmospheric parameters, and 17 abundance species, and applied machine learning algorithms to group the stars based on their chemical composition. This approach allows us to evaluate the viability and efficiency of the chemical tagging technique. Results. We found that stars at different evolutionary stages have distinct chemical patterns that may be due to NLTE effects, atomic diffusion, mixing, and biases. When separating stars into dwarfs and giants, we observed that a few open clusters show distinct chemical signatures while the majority show a high degree of overlap. This limits the recovery of co-natal aggregates by applying the chemical tagging technique. Nevertheless, there is room for improvement if more elements are included and models are improved.


Astronomy and Astrophysics | 2014

Gaia-ESO Survey: Properties of the intermediate age open cluster NGC 4815

Eileen D. Friel; P. Donati; A. Bragaglia; Heather R. Jacobson; L. Magrini; L. Prisinzano; S. Randich; M. Tosi; T. Cantat-Gaudin; A. Vallenari; R. Smiljanic; Giovanni Carraro; R. Sordo; E. Maiorca; Grazina Tautvaisiene; P. Sestito; S. Zaggia; F. M. Jimenez-Estebae; G. Gilmore; R. D. Jeffries; Emilio J. Alfaro; Thomas Bensby; S. E. Koposov; A. Korn; E. Pancino; A. Recio-Blanco; E. Franciosini; V. Hill; R. J. Jackson; P. de Laverny

Context. NGC 4815 is a populous similar to 500 Myr open cluster at R-gc similar to 7 kpc observed in the first six months of the Gaia-ESO Survey. Located in the inner Galactic disk, NGC 4815 is an important potential tracer of the abundance gradient, where relatively few intermediate age open clusters are found. Aims. The Gaia-ESO Survey data can provide an improved characterization of the cluster properties, such as age, distance, reddening, and abundance profile. Methods. We use the survey derived radial velocities, stellar atmospheric parameters, metallicity, and elemental abundances for stars targeted as potential members of this cluster to carry out an analysis of cluster properties. The radial velocity distribution of stars in the cluster field is used to define the cluster systemic velocity and derive likely cluster membership for stars observed by the Gaia-ESO Survey. We investigate the distributions of Fe and Fe-peak elements, alpha-elements, and the light elements Na and Al and characterize the clusters internal chemical homogeneity comparing it to the properties of radial velocity non-member stars. Utilizing these cluster properties, the cluster color-magnitude diagram is analyzed and theoretical isochrones are fit to derive cluster reddening, distance, and age. Results. NGC 4815 is found to have a mean metallicity of [Fe/H] = +0.03 +/- 0.05 dex (s.d.). Elemental abundances of cluster members show typically very small internal variation, with internal dispersions of similar to 0.05 dex. The alpha-elements [Ca/Fe] and [Si/Fe] show solar ratios, but [Mg/Fe] is moderately enhanced, while [Ti/Fe] appears slightly deficient. As with many open clusters, the light elements [Na/Fe] and [Al/Fe] are enhanced, [Na/Fe] significantly so, although the role of internal mixing and the assumption of local thermodynamical equilibrium in the analysis remain to be investigated. From isochrone fits to color-magnitude diagrams, we find a cluster age of 0.5 to 0.63 Gyr, a reddening of E(B-V) = 0.59 to 0.65, and a distance modulus (m -M)(0) = 11.95 to 12.20, depending on the choice of theoretical models, leading to a Galactocentric distance of 6.9 kpc.


Astronomy and Astrophysics | 2016

The Gaia-ESO Survey: Probes of the inner disk abundance gradient

Heather R. Jacobson; Eileen D. Friel; Lucie Jílková; L. Magrini; A. Bragaglia; A. Vallenari; M. Tosi; S. Randich; P. Donati; T. Cantat-Gaudin; R. Sordo; R. Smiljanic; J. Overbeek; Giovanni Carraro; Grazina Tautvaisiene; I. San Roman; Sandro Villanova; D. Geisler; C. Muñoz; F. Jimenez-Esteban; B. Tang; G. Gilmore; E. J. Alfaro; Thomas Bensby; E. Flaccomio; S. E. Koposov; A. Korn; E. Pancino; A. Recio-Blanco; Andrew R. Casey

Context. The nature of the metallicity gradient inside the solar circle (RGC <8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. Aims. We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. Methods. We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. Results. The GES open clusters exhibit a radial metallicity gradient of -0.10 ± 0.02 dex kpc-1, consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range RGC ~ 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. Conclusions. We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature. (Less)


Astronomy and Astrophysics | 2016

The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs - Implications for stellar and Galactic chemical evolution

R. Smiljanic; D. Romano; A. Bragaglia; P. Donati; L. Magrini; Eileen D. Friel; Heather R. Jacobson; S. Randich; P. Ventura; Karin Lind; Maria Bergemann; Thomas Nordlander; Thierry Morel; E. Pancino; Grazina Tautvaisiene; V. Adibekyan; M. Tosi; A. Vallenari; G. Gilmore; Thomas Bensby; P. François; S. E. Koposov; A. C. Lanzafame; A. Recio-Blanco; A. Bayo; Giovanni Carraro; Andrew R. Casey; M. T. Costado; E. Franciosini; Ulrike Heiter

Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than similar to 1.5-2.0 M-circle dot. The surface alu ...


Astronomy and Astrophysics | 2014

The Gaia-ESO Survey: metallicity of the Chamaeleon I star forming region ⋆

L. Spina; S. Randich; E. Palla; K. Biazzo; G. G. Sacco; Emilio J. Alfaro; E. Franciosini; L. Magrini; L. Morbidelli; A. Frasca; V. Adibekyan; E. Delgado-Mena; S. G. Sousa; J. I. González Hernández; D. Montes; H. M. Tabernero; Grazina Tautvaisiene; R. Bonito; Alessandro C. Lanzafame; G. Gilmore; R. D. Jeffries; A. Vallenari; Thomas Bensby; A. Bragaglia; E. Flaccomio; A. Korn; F. Pancino; A. Recio-Blanco; R. Smiljanic; Maria Bergemann

Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star forming region. based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. The 48 candidate members of Chamaeleon I have been observed with the high-resolution, spectrograph UVES. We use the surface gravity, lithium line equivalent width, and position in the Hertzsprimg-Russell diagram to confirm the cluster members, and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets. we confirm 15 high probability members. Considering the metallicity measurements for nine of them. we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H] = -0.08 +/- 0.04 dex, This result agrees with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.


Astronomy and Astrophysics | 2017

The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars

L. Magrini; S. Randich; G. Kordopatis; N. Prantzos; D. Romano; A. Chieffi; M. Limongi; P. François; E. Pancino; Eileen D. Friel; A. Bragaglia; Grazina Tautvaisiene; L. Spina; J. Overbeek; T. Cantat-Gaudin; P. Donati; A. Vallenari; R. Sordo; F. Jimenez-Esteban; B. Tang; A. Drazdauskas; S. G. Sousa; Sonia Duffau; P. Jofre; G. Gilmore; Sofia Feltzing; E. J. Alfaro; Thomas Bensby; E. Flaccomio; S. E. Koposov

Context. The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. Aims. We aim to trace the radial distributions of abundances of elements produced through different nucleosynthetic channels - the α-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by use of the Gaia-ESO IDR4 results for open clusters and young-field stars. Methods. From the UVES spectra of member stars, we have determined the average composition of clusters with ages > 0.1 Gyr. We derived statistical ages and distances of field stars. We traced the abundance gradients using the cluster and field populations and compared them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc <RGC< 7 kpc), with their differences, that were usually poorly explained by chemical evolution models. Conclusions. Oxygen and magnesium are often considered to be equivalent in tracing α-element abundances and in deducing, for example, the formation timescales of different Galactic stellar populations. In addition, often [α/Fe] is computed combining several α-elements. Our results indicate, as expected, a complex and diverse nucleosynthesis of the various α-elements, in particular in the high metallicity regimes, pointing towards a different origin of these elements and highlighting the risk of considering them as a single class with common features. (Less)

Collaboration


Dive into the Grazina Tautvaisiene's collaboration.

Top Co-Authors

Avatar

G. Gilmore

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. T. Costado

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

E. Pancino

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge