Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greetje Vanhoutte is active.

Publication


Featured researches published by Greetje Vanhoutte.


Magnetic Resonance in Medicine | 2005

Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease

Greetje Vanhoutte; Ilse Dewachter; Peter Borghgraef; F. Van Leuven; A. Van der Linden

Transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP[V717I]) in neurons develop amyloid plaques in the brain, thus demonstrating the most prominent neuropathological hallmark of Alzheimers disease. In vivo 3D T2*‐weighted MRI on these mice (24 months of age) revealed hypointense brain inclusions that affected the thalamus almost exclusively. Upon correlating these MRI observations with a panel of different histologic staining techniques, it appeared that only plaques that were positive for both thioflavin‐S and iron were visible on the MR images. Numerous thioflavin‐S‐positive plaques in the cortex that did not display iron staining remained invisible to MRI. The in vivo detection of amyloid plaques in this mouse model, using the intrinsic MRI contrast arising from the iron associated with the plaques, creates an unexpected opportunity for the noninvasive investigation of the longitudinal development of the plaques in the same animal. Thus, this work provides further research opportunities for analyzing younger APP[V717I] mouse models with the knowledge of the final outcome at 24 months of age. Magn Reson Med 53:607–613, 2005.


Neurobiology of Disease | 2007

Overexpression of human wildtype torsinA and human ΔGAG torsinA in a transgenic mouse model causes phenotypic abnormalities

Kathrin Grundmann; B. Reischmann; Greetje Vanhoutte; Jeannette Hübener; Peter Teismann; Till Karsten Hauser; Michael Bonin; J. Wilbertz; S. Horn; Huu Phuc Nguyen; M. Kuhn; S. Chanarat; Hartwig Wolburg; A. Van der Linden; Olaf Riess

Primary torsion dystonia is an autosomal-dominant inherited movement disorder. Most cases are caused by an in-frame deletion (GAG) of the DYT1 gene encoding torsinA. Reduced penetrance and phenotypic variability suggest that alteration of torsinA amino acid sequence is necessary but not sufficient for development of clinical symptoms and that additional factors must contribute to the factual manifestation of the disease. We generated 4 independent transgenic mouse lines, two overexpressing human mutant torsinA and two overexpressing human wildtype torsinA using a strong murine prion protein promoter. Our data provide for the first time in vivo evidence that not only mutant torsinA is detrimental to neuronal cells but that also wildtype torsinA can lead to neuronal dysfunction when overexpressed at high levels. This hypothesis is supported by (i) neuropathological findings, (ii) neurochemistry, (iii) behavioral abnormalities and (iv) DTI-MRI analysis.


European Heart Journal | 2015

Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death

Carole Van der Donckt; Jozef L. Van Herck; Dorien M. Schrijvers; Greetje Vanhoutte; Marleen Verhoye; Ines Blockx; Annemie Van der Linden; Dries Bauters; H.R. Lijnen; Judith C. Sluimer; Lynn Roth; Cor E. Van Hove; Paul Fransen; Michiel Knaapen; Anne-Sophie Hervent; Gilles W. De Keulenaer; Hidde Bult; Wim Martinet; Arnold G. Herman; Guido R.Y. De Meyer

Our study underscores the importance of elastin fragmentation in the vessel wall as an accelerator of atherosclerosis with enhanced inflammation and increased neovascularization, thereby promoting the development of unstable plaques that eventually may rupture. The present mouse model offers the opportunity to further investigate the role of key factors involved in plaque destabilization and potential targets for therapeutic interventions.


NeuroImage | 2016

Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination

Caroline Guglielmetti; Jelle Veraart; E. Roelant; Zhenhua Mai; Jasmijn Daans; J. Van Audekerke; Maarten Naeyaert; Greetje Vanhoutte; R. Delgado y Palacios; Jelle Praet; Els Fieremans; Peter Ponsaerts; Jan Sijbers; A. Van der Linden; Marleen Verhoye

Although MRI is the gold standard for the diagnosis and monitoring of multiple sclerosis (MS), current conventional MRI techniques often fail to detect cortical alterations and provide little information about gliosis, axonal damage and myelin status of lesioned areas. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) provide sensitive and complementary measures of the neural tissue microstructure. Additionally, specific white matter tract integrity (WMTI) metrics modelling the diffusion in white matter were recently derived. In the current study we used the well-characterized cuprizone mouse model of central nervous system demyelination to assess the temporal evolution of diffusion tensor (DT), diffusion kurtosis tensor (DK) and WMTI-derived metrics following acute inflammatory demyelination and spontaneous remyelination. While DT-derived metrics were unable to detect cuprizone induced cortical alterations, the mean kurtosis (MK) and radial kurtosis (RK) were found decreased under cuprizone administration, as compared to age-matched controls, in both the motor and somatosensory cortices. The MK remained decreased in the motor cortices at the end of the recovery period, reflecting long lasting impairment of myelination. In white matter, DT, DK and WMTI-derived metrics enabled the detection of cuprizone induced changes differentially according to the stage and the severity of the lesion. More specifically, the MK, the RK and the axonal water fraction (AWF) were the most sensitive for the detection of cuprizone induced changes in the genu of the corpus callosum, a region less affected by cuprizone administration. Additionally, microgliosis was associated with an increase of MK and RK during the acute inflammatory demyelination phase. In regions undergoing severe demyelination, namely the body and splenium of the corpus callosum, DT-derived metrics, notably the mean diffusion (MD) and radial diffusion (RD), were among the best discriminators between cuprizone and control groups, hence highlighting their ability to detect both acute and long lasting changes. Interestingly, WMTI-derived metrics showed the aptitude to distinguish between the different stages of the disease. Both the intra-axonal diffusivity (Da) and the AWF were found to be decreased in the cuprizone treated group, Da specifically decreased during the acute inflammatory demyelinating phase whereas the AWF decrease was associated to the spontaneous remyelination and the recovery period. Altogether our results demonstrate that DKI is sensitive to alterations of cortical areas and provides, along with WMTI metrics, information that is complementary to DT-derived metrics for the characterization of demyelination in both white and grey matter and subsequent inflammatory processes associated with a demyelinating event.


PLOS ONE | 2013

Resting State fMRI Reveals Diminished Functional Connectivity in a Mouse Model of Amyloidosis

Disha Shah; Elisabeth Jonckers; Jelle Praet; Greetje Vanhoutte; Rafael Delgado y Palacios; Christian Bigot; Dany V. D’Souza; Marleen Verhoye; Annemie Van der Linden

Introduction Functional connectivity (FC) studies have gained immense popularity in the evaluation of several neurological disorders, such as Alzheimer’s disease (AD). AD is a complex disorder, characterised by several pathological features. The problem with FC studies in patients is that it is not straightforward to focus on a specific aspect of pathology. In the current study, resting state functional magnetic resonance imaging (rsfMRI) is applied in a mouse model of amyloidosis to assess the effects of amyloid pathology on FC in the mouse brain. Methods Nine APP/PS1 transgenic and nine wild-type mice (average age 18.9 months) were imaged on a 7T MRI system. The mice were anesthetized with medetomidine and rsfMRI data were acquired using a gradient echo EPI sequence. The data were analysed using a whole brain seed correlation analysis and interhemispheric FC was evaluated using a pairwise seed analysis. Qualitative histological analyses were performed to assess amyloid pathology, inflammation and synaptic deficits. Results The whole brain seed analysis revealed an overall decrease in FC in the brains of transgenic mice compared to wild-type mice. The results showed that interhemispheric FC was relatively preserved in the motor cortex of the transgenic mice, but decreased in the somatosensory cortex and the hippocampus when compared to the wild-type mice. The pairwise seed analysis confirmed these results. Histological analyses confirmed the presence of amyloid pathology, inflammation and synaptic deficits in the transgenic mice. Conclusions In the current study, rsfMRI demonstrated decreased FC in APP/PS1 transgenic mice compared to wild-type mice in several brain regions. The APP/PS1 transgenic mice had advanced amyloid pathology across the brain, as well as inflammation and synaptic deficits surrounding the amyloid plaques. Future studies should longitudinally evaluate APP/PS1 transgenic mice and correlate the rsfMRI findings to specific stages of amyloid pathology.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2009

In Vivo Morphological Changes in Animal Models of Amyotrophic Lateral Sclerosis and Alzheimer's‐Like Disease: MRI Approach

Pavle R. Andjus; Danijela Bataveljic; Greetje Vanhoutte; Dinko Mitrečić; Fabrizio Pizzolante; Nevena Djogo; Charles Nicaise; Fabrice Gankam Kengne; Carlo Gangitano; Fabrizio Michetti; Annemie Van der Linden; Roland Pochet; Goran Bačić

Magnetic resonance imaging (MRI) is the only noninvasive technique that provides structural information on both cell loss and metabolic changes. After reviewing all the results obtained in clinical studies, reliable biomarkers in neurological diseases are still lacking. Diffusional MRI, MR spectroscopy, and the assessment of regional atrophy are promising approaches, but they cannot be simultaneously used on a single patient. Thus, for further research progress, reliable animal models are needed. To this aim, we have used the clinical MRI to assess neurodegenerative processes in the hSOD‐1G93A ALS rat model and in the trimethyltin (TMT)‐treated model of Alzheimers‐like disease. T2‐weighted (T2W) hyperintensive neurodegenerative foci were found in the brainstem of the ALS rat with apparent lateral ventricle dilation (T1W—hypointensity vs. T2W—hyperintensity). Degenerative processes in these areas were also confirmed by confocal images of GFAP‐positive astrogliosis. MRI after i.v.i. of magnetic anti‐CD4 antibodies indicated an accumulation of inflammatory cells near dilated ventricles. TMT‐treated rats also revealed the dilation of lateral ventricles. Expected deterioration in the hippocampus was not observed by clinical MRI, but immunocytochemistry could reveal significant redistribution of macro‐ and microglia in this structure. In both models, Gd‐DTPA contrast revealed a compromised blood brain barrier that may serve as the passage for inflammatory immune cells in the vicinity of dilated lateral ventricles. Moreover, in both models the midbrain region of the dorsal hippocampus was the target of BBB compromise, thus revealing a potentially vulnerable point that can be the primary target of neurodegeneration in the central nervous system. Anat Rec, 292:1882–1892, 2009.


Cell Transplantation | 2011

Clinical potential of intravenous neural stem cell delivery for treatment of neuroinflammatory disease in mice

Kristien Reekmans; Jelle Praet; Nathalie De Vocht; Bart Tambuyzer; Irene Bergwerf; Jasmijn Daans; Veerle Baekelandt; Greetje Vanhoutte; Herman Goossens; Philippe G. Jorens; Dirk Ysebaert; Shyama Chatterjee; Patrick Pauwels; Eric Van Marck; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts

While neural stem cells (NSCs) are widely expected to become a therapeutic agent for treatment of severe injuries to the central nervous system (CNS), currently there are only few detailed preclinical studies linking cell fate with experimental outcome. In this study, we aimed to validate whether IV administration of allogeneic NSC can improve experimental autoimmune encephalomyelitis (EAE), a well-established animal model for human multiple sclerosis (MS). For this, we cultured adherently growing luciferase-expressing NSCs (NSC-Luc), which displayed a uniform morphology and expression profile of membrane and intracellular markers, and which displayed an in vitro differentiation potential into neurons and astrocytes. Following labeling with green fluorescent micron-sized iron oxide particles (f-MPIO-labeled NSC-Luc) or lentiviral transduction with the enhanced green fluorescent protein (eGFP) reporter gene (NSC-Luc/eGFP), cell implantation experiments demonstrated the intrinsic survival capacity of adherently cultured NSC in the CNS of syngeneic mice, as analyzed by real-time bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and histological analysis. Next, EAE was induced in C57BL/6 mice followed by IV administration of NSC-Luc/eGFP at day 7 postinduction with or without daily immunosuppressive therapy (cyclosporine A, CsA). During a follow-up period of 20 days, the observed clinical benefit could be attributed solely to CsA treatment. In addition, histological analysis demonstrated the absence of NSC-Luc/eGFP at sites of neuroinflammation. In order to investigate the absence of therapeutic potential, BLI biodistribution analysis of IV-administered NSC-Luc/eGFP revealed cell retention in lung capillaries as soon as 1-min postinjection, resulting in massive inflammation and apoptosis in lung tissue. In summary, we conclude that IV administration of NSCs currently has limited or no therapeutic potential for neuroinflammatory disease in mice, and presumably also for human MS. However, given the fact that grafted NSCs have an intrinsic survival capacity in the CNS, their therapeutic exploitation should be further investigated, and—in contrast to several other reports—will most likely be highly complex.


Magnetic Resonance in Medicine | 2002

Assessment of the neovascular permeability in glioma xenografts by dynamic T(1) MRI with Gadomer-17.

Marleen Verhoye; Boudewijn P.J. van der Sanden; Paul F.J.W. Rijken; Hans P.W. Peters; Albert J. van der Kogel; Gilke Pée; Greetje Vanhoutte; Arend Heerschap; Annemie Van der Linden

The uptake of Gadomer‐17, as probed by fast dynamic T1 measurements, was used to assess the vascular permeability surface‐area product per leakage volume of tissue (kTofts) of human glioma xenografts implanted in mice. With this approach we could discriminate between two types of glioma xenograft lines with a known difference in the perfused vascular architecture and degree of hypoxia. The T1 data were analyzed according to the Tofts‐Kermode compartment model. The fast‐growing E102 tumor demonstrated a homogeneous distribution of the vascular permeability surface area across the tumor (mean kTofts value = 0.18 ± 0.05 min−1). The slowly growing E106 tumor showed a more heterogeneous pattern. Three perfused tumor areas with differences in vascular permeability surface area could be distinguished: a well‐perfused periphery with high kTofts values (0.24 ± 0.04 min−1), perfused capillaries inside the tumor with low kTofts values (0.108 ± 0.026 min−1), and perfused capillaries adjacent to necrotic regions with high kTofts values (0.29 ± 0.10 min−1). On a different series of tumors, the hypoxic fractions were measured, and these were significantly higher in E106 tumors (0.14 ± 0.05) compared to tumors of the E102 line (0.03 ± 0.02). Magn Reson Med 47:305–313, 2002.


Magnetic Resonance in Medicine | 2013

Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzheimer's disease

Greetje Vanhoutte; Sandra Pereson; Rafael Delgado y Palacios; Pieter-Jan Guns; Bob Asselbergh; Jelle Veraart; Jan Sijbers; Marleen Verhoye; Christine Van Broeckhoven; Annemie Van der Linden

Amyloid deposition in the brain is considered an initial event in the progression of Alzheimers disease. We hypothesized that the presence of amyloid plaques in the brain of APP/presenilin 1 mice leads to higher diffusion kurtosis measures due to increased microstructural complexity. As such, our purpose was to provide an in vivo proof of principle for detection of amyloidosis by diffusion kurtosis imaging (DKI).


Magnetic Resonance in Medicine | 2006

Changing body temperature affects the T 2* signal in the rat brain and reveals hypothalamic activity

Greetje Vanhoutte; Marleen Verhoye; A. Van der Linden

This study was designed to determine brain activity in the hypothalamus—in particular the thermoregulatory function of the hypothalamic preoptic area (PO). We experimentally changed the body temperature in rats within the physiological range (37–39°C) and monitored changes in blood oxygenation level‐dependent (BOLD) MR signal. To explore PO activity we had to deal with general signal changes caused by temperature‐dependent alterations in the affinity of oxygen for hemoglobin, which contributes to BOLD contrast because it is partly sensitive to the amount of paramagnetic deoxyhemoglobin in the voxel. To reduce these overall temperature‐induced effects, we corrected the BOLD data using brain‐specific correction algorithms. The results showed activity of the PO during body warming from 38°C to 39°C, supported by an increased BOLD signal after correction. This is the first fMRI study on the autonomous nervous system in which hypothalamic activity elicited by changes in the internal environment (body temperature) was monitored. In this study we also demonstrate 1) that any fMRI study of anesthetized small animals should guard against background BOLD signal drift, since animals are vulnerable to body temperature fluctuations; and 2) the existence of a link between PO activity and the sympathetically‐mediated opening of the arteriovenous anastomoses in a parallel study on the rat tail, a peripheral thermoregulatory organ. Magn Reson Med, 2006.

Collaboration


Dive into the Greetje Vanhoutte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge