Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg C. Smith is active.

Publication


Featured researches published by Greg C. Smith.


Journal of Virology | 2004

Immunization with Modified Vaccinia Virus Ankara-Based Recombinant Vaccine against Severe Acute Respiratory Syndrome Is Associated with Enhanced Hepatitis in Ferrets

Hana Weingartl; Markus Czub; Stefanie Czub; James Neufeld; Peter Marszal; Jason Gren; Greg C. Smith; Shane Jones; Roxanne Proulx; Yvonne Deschambault; Elsie Grudeski; Anton Andonov; Runtao He; Yan Li; John Copps; Allen Grolla; Daryl Dick; Jody Berry; Shelley Ganske; Lisa Manning; Jingxin Cao

ABSTRACT Severe acute respiratory syndrome (SARS) caused by a newly identified coronavirus (SARS-CoV) is a serious emerging human infectious disease. In this report, we immunized ferrets (Mustela putorius furo) with recombinant modified vaccinia virus Ankara (rMVA) expressing the SARS-CoV spike (S) protein. Immunized ferrets developed a more rapid and vigorous neutralizing antibody response than control animals after challenge with SARS-CoV; however, they also exhibited strong inflammatory responses in liver tissue. Inflammation in control animals exposed to SARS-CoV was relatively mild. Thus, our data suggest that vaccination with rMVA expressing SARS-CoV S protein is associated with enhanced hepatitis.


Emerging Infectious Diseases | 2010

Human Hendra Virus Encephalitis Associated with Equine Outbreak, Australia, 2008

Elliott Geoffrey Playford; Brad J McCall; Greg C. Smith; Vicki Slinko; George Allen; Ina Smith; Frederick A. Moore; Carmel T. Taylor; Yu-Hsin Kung; Hume E. Field

Emergence of this virus is a serious medical, veterinary, and public health challenge.


Scientific Reports | 2012

Transmission of Ebola virus from pigs to non-human primates

Hana Weingartl; Carissa Embury-Hyatt; Charles Nfon; Anders Leung; Greg C. Smith; Gary P. Kobinger

Ebola viruses (EBOV) cause often fatal hemorrhagic fever in several species of simian primates including human. While fruit bats are considered natural reservoir, involvement of other species in EBOV transmission is unclear. In 2009, Reston-EBOV was the first EBOV detected in swine with indicated transmission to humans. In-contact transmission of Zaire-EBOV (ZEBOV) between pigs was demonstrated experimentally. Here we show ZEBOV transmission from pigs to cynomolgus macaques without direct contact. Interestingly, transmission between macaques in similar housing conditions was never observed. Piglets inoculated oro-nasally with ZEBOV were transferred to the room housing macaques in an open inaccessible cage system. All macaques became infected. Infectious virus was detected in oro-nasal swabs of piglets, and in blood, swabs, and tissues of macaques. This is the first report of experimental interspecies virus transmission, with the macaques also used as a human surrogate. Our finding may influence prevention and control measures during EBOV outbreaks.


Journal of Virology | 2005

Invasion of the Central Nervous System in a Porcine Host by Nipah Virus

Hana Weingartl; Stefanie Czub; John Copps; Yohannes Berhane; Deborah Middleton; Peter Marszal; Jason Gren; Greg C. Smith; Shelley Ganske; Lisa Manning; Markus Czub

ABSTRACT Nipah virus, a newly emerged zoonotic paramyxovirus, infects a number of species. Human infections were linked to direct contact with pigs, specifically with their body fluids. Clinical signs in human cases indicated primarily involvement of the central nervous system, while in pigs the respiratory system was considered the primary virus target, with only rare involvement of the central nervous system. Eleven 5-week-old piglets were infected intranasally, orally, and ocularly with 2.5 × 105 PFU of Nipah virus per animal and euthanized between 3 and 8 days postinoculation. Nipah virus caused neurological signs in two out of eleven inoculated pigs. The rest of the pigs remained clinically healthy. Virus was detected in the respiratory system (turbinates, nasopharynx, trachea, bronchus, and lung in titers up to 105.3 PFU/g) and in the lymphoreticular system (endothelial cells of blood and lymphatic vessels, submandibular and bronchiolar lymph nodes, tonsil, and spleen with titers up to 106 PFU/g). Virus presence was confirmed in the nervous system of both sick and apparently healthy animals (cranial nerves, trigeminal ganglion, brain, and cerebrospinal fluid, with titers up to 107.7 PFU/g of tissue). Nipah virus distribution was confirmed by immunohistochemistry. The study presents novel findings indicating that Nipah virus invaded the central nervous system of the porcine host via cranial nerves as well as by crossing the blood-brain barrier after initial virus replication in the upper respiratory tract.


Emerging Infectious Diseases | 2010

Hendra Virus Outbreak with Novel Clinical Features, Australia

Hume E. Field; Kylie Schaaf; Nina Kung; Craig Simon; David Waltisbuhl; Heather Hobert; Frederick A. Moore; Deborah Middleton; Allison Crook; Greg C. Smith; Peter Daniels; Ron Glanville; David Lovell

To determine the epidemiologic and clinical features of a 2008 outbreak of Hendra virus infection in a veterinary clinic in Australia, we investigated the equine case-series. Four of 5 infected horses died, as did 1 of 2 infected staff members. Clinical manifestation in horses was predominantly neurologic. Preclinical transmission appears likely.


Diabetologia | 2008

Atypical antipsychotic drugs induce derangements in glucose homeostasis by acutely increasing glucagon secretion and hepatic glucose output in the rat

Greg C. Smith; C. Chaussade; Mark H. Vickers; Jørgen Jensen; Peter R. Shepherd

Aims/hypothesisUse of the second-generation antipsychotic drugs (SGAs) results in the development of obesity and a type 2 diabetes-like syndrome. We hypothesised that, in addition to the insulin resistance associated with the obesity, the SGAs might have acute effects on glucose metabolism that could contribute to the derangements in glucose metabolism.MethodsWe investigated the effects of therapeutically relevant levels of three different antipsychotic medications (haloperidol, quetiapine and clozapine) on glucose tolerance, measures of insulin resistance and hepatic glucose production, and on insulin and glucagon secretion in rats.ResultsWe found that these drugs induce impaired glucose tolerance in rats that is associated with increased insulin secretion (clozapine>quetiapine>haloperidol) but is independent of weight gain. However, Akt/protein kinase B activation is normal, and at these levels of drug there was no effect on insulin action in fat cells or soleus muscle, and no effect on insulin sensitivity as evaluated by insulin tolerance tests. We show that clozapine induces increased glucose levels following pyruvate and glycerol challenges, indicating an increase in hepatic glucose output (HGO). Increased HGO would in turn increase insulin release and would explain the apparent phenotype mimicking insulin resistance. We provide evidence that this effect could at least in part be mediated by a stimulation of glucagon secretion.Conclusions/interpretationOur findings indicate that SGAs can cause acute derangements in glucose metabolism that are not caused by a direct induction of insulin resistance but act via an increase in glucagon secretion and thus stimulation of hepatic glucose production.


Journal of Applied Physiology | 2012

Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men

Cheyne E. Donges; Nicholas A. Burd; Rob Duffield; Greg C. Smith; Daniel W. D. West; Michael J. Short; Richard W.A. Mackenzie; Lindsay D. Plank; Peter R. Shepherd; Stuart M. Phillips; Johann Edge

We determined myofibrillar and mitochondrial protein fractional synthesis rates (FSR), intramuscular signaling protein phosphorylation, and mRNA expression responses after isolated bouts of resistance exercise (RE), aerobic exercise (AE), or in combination [termed concurrent exercise (CE)] in sedentary middle-aged men. Eight subjects (age = 53.3 ± 1.8 yr; body mass index = 29.4 ± 1.4 kg·m(2)) randomly completed 8 × 8 leg extension repetitions at 70% of one repetition-maximum, 40 min of cycling at 55% peak aerobic power output (AE), or (consecutively) 50% of the RE and AE trials (CE). Biopsies were obtained (during a primed, constant infusion of l-[ring-(13)C(6)]phenylalanine) while fasted, and at 1 and 4 h following postexercise ingestion of 20 g of protein. All trials increased mitochondrial FSR above fasted rates (RE = 1.3-fold; AE = 1.5; CE = 1.4; P < 0.05), although only CE (2.2) and RE (1.8) increased myofibrillar FSR (P < 0.05). At 1 h postexercise, phosphorylation of Akt on Ser(473) (CE = 7.7; RE = 4.6) and Thr(308) (CE = 4.4; RE = 2.9), and PRAS40 on Thr(246) (CE = 3.8; AE = 2.5) increased (P < 0.05), with CE greater than AE for Akt Ser(473)-Thr(308) and greater than RE for PRAS40 (P < 0.05). Despite increased phosphorylation of Akt-PRAS40, phosphorylation of mammalian target of rapamycin (Ser(2448)) remained unchanged (P > 0.05), while rpS6 (Ser(235/236)) increased only in RE (10.4) (P < 0.05). CE and AE both resulted in increased peroxisome proliferator receptor-γ coactivator 1-α (PGC1α) expression at 1 h (CE = 2.9; AE = 2.8; P < 0.05) and 4 h (CE = 2.6; AE = 2.4) and PGC1β expression at 4 h (CE = 2.1; AE = 2.6; P < 0.05). These data suggest that CE-induced acute stimulation of myofibrillar and mitochondrial FSR, protein signaling, and mRNA expression are equivalent to either isolate mode (RE or AE). These results occurred without an interference effect on muscle protein subfractional synthesis rates, protein signaling, or mRNA expression.


Emerging Infectious Diseases | 2004

Susceptibility of Pigs and Chickens to SARS Coronavirus

Hana Weingartl; John Copps; Michael A. Drebot; Peter Marszal; Greg C. Smith; Jason Gren; Maya Andonova; John Pasick; Paul Kitching; Markus Czub

An outbreak of severe acute respiratory syndrome (SARS) in humans, associated with a new coronavirus, was reported in Southeast Asia, Europe, and North America in early 2003. To address speculations that the virus originated in domesticated animals, or that domestic species were susceptible to the virus, we inoculated 6-week-old pigs and chickens intravenously, intranasally, ocularly, and orally with 106 PFU of SARS-associated coronavirus (SARS-CoV). Clinical signs did not develop in any animal, nor were gross pathologic changes evident on postmortem examinations. Attempts at virus isolation were unsuccessful; however, viral RNA was detected by reverse transcriptase-polymerase chain reaction in blood of both species during the first week after inoculation, and in chicken organs at 2 weeks after inoculation. Virus-neutralizing antibodies developed in the pigs. Our results indicate that these animals do not play a role as amplifying hosts for SARS-CoV.


Biochemical Journal | 2012

Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo.

Greg C. Smith; Wee Kiat Ong; Gordon W. Rewcastle; Jackie D. Kendall; Weiping Han; Peter R. Shepherd

In in vitro studies class-I PI3Ks (phosphoinositide 3-kinases), class-II PI3Ks and mTOR (mammalian target of rapamycin) have all been described as having roles in the regulation of glucose metabolism. The relative role each plays in the normal signalling processes regulating glucose metabolism in vivo is less clear. Knockout and knockin mouse models have provided some evidence that the class-I PI3K isoforms p110α, p110β, and to a lesser extent p110γ, are necessary for processes regulating glucose metabolism and appetite. However, in these models the PI3K activity is chronically reduced. Therefore we analysed the effects of acutely inhibiting PI3K isoforms alone, or PI3K and mTOR, on glucose metabolism and food intake. In the present study impairments in glucose tolerance, insulin tolerance and increased hepatic glucose output were observed in mice treated with the pan-PI3K/mTOR inhibitors PI-103 and NVP-BEZ235. The finding that ZSTK474 has similar effects indicates that these effects are due to inhibition of PI3K rather than mTOR. The p110α-selective inhibitors PIK75 and A66 also induced these phenotypes, but inhibitors of p110β, p110δ or p110γ induced only minor effects. These drugs caused no significant effects on BMR (basal metabolic rate), O2 consumption or water intake, but BEZ235, PI-103 and PIK75 did cause a small reduction in food consumption. Surprisingly, pan-PI3K inhibitors or p110α inhibitors caused reductions in animal movement, although the cause of this is not clear. Taken together these studies provide pharmacological evidence to support a pre-eminent role for the p110α isoform of PI3K in pathways acutely regulating glucose metabolism.


Scientific Reports | 2015

Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men

Benjamin B. Albert; José G. B. Derraik; Christine M. Brennan; Janene B. Biggs; Greg C. Smith; Manohar L. Garg; David Cameron-Smith; Paul Hofman; Wayne S. Cutfield

We assessed whether omega-3 index (red blood cell concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) was associated with insulin sensitivity and other metabolic outcomes in 47 overweight men aged 46.5 ± 5.1 years. Participants were assessed twice, 16 weeks apart. Insulin sensitivity was assessed by the Matsuda method from an oral glucose tolerance test. Linear associations were examined; stratified analyses were carried out with participants separated according to the omega-3 index: lower tertiles (LOI; n = 31) and highest tertile (HOI; n = 16). Increasing omega-3 index was correlated with higher insulin sensitivity (r = 0.23; p = 0.025), higher disposition index (r = 0.20; p = 0.054), and lower CRP concentrations (r = −0.39; p < 0.0001). Insulin sensitivity was 43% higher in HOI than in LOI men (Matsuda index 6.83 vs 4.78; p = 0.009). Similarly, HOI men had disposition index that was 70% higher (p = 0.013) and fasting insulin concentrations 25% lower (p = 0.038). HOI men displayed lower nocturnal systolic blood pressure (−6.0 mmHg; p = 0.025) and greater systolic blood pressure dip (14.7 vs 10.8%; p = 0.039). Men in the HOI group also had lower concentrations of CRP (41% lower; p = 0.033) and free fatty acids (21% lower, p = 0.024). In conclusion, higher omega-3 index is associated with increased insulin sensitivity and a more favourable metabolic profile in middle-aged overweight men.

Collaboration


Dive into the Greg C. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hana Weingartl

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nigel Turner

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Edge

University of Auckland

View shared research outputs
Researchain Logo
Decentralizing Knowledge