Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg Elgar is active.

Publication


Featured researches published by Greg Elgar.


PLOS Biology | 2004

Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development

Adam Woolfe; Martin Goodson; Debbie K. Goode; Phil Snell; Gayle K. McEwen; Tanya Vavouri; Sarah Smith; Phil North; Heather Callaway; Krys Kelly; Klaudia Walter; Irina I. Abnizova; Walter R. Gilks; Yvonne J. K. Edwards; Julie Cooke; Greg Elgar

In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH), in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development, including many transcription factors. These highly conserved non-coding sequences are likely to form part of the genomic circuitry that uniquely defines vertebrate development.


Nature Genetics | 2013

Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution.

Jeramiah J. Smith; Shigehiro Kuraku; Carson Holt; Tatjana Sauka-Spengler; Ning Jiang; Michael S. Campbell; Mark Yandell; Tereza Manousaki; Axel Meyer; Ona Bloom; Jennifer R. Morgan; Joseph D. Buxbaum; Ravi Sachidanandam; Carrie Sims; Alexander S. Garruss; Malcolm Cook; Robb Krumlauf; Leanne M. Wiedemann; Stacia A. Sower; Wayne A. Decatur; Jeffrey A. Hall; Chris T. Amemiya; Nil Ratan Saha; Katherine M. Buckley; Jonathan P. Rast; Sabyasachi Das; Masayuki Hirano; Nathanael McCurley; Peng Guo; Nicolas Rohner

Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.


Nature | 2012

Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation

Jennifer Grant; Shantha K. Mahadevaiah; Pavel P. Khil; Mahesh N Sangrithi; Hélène Royo; Janine A. Duckworth; John R. McCarrey; John L. VandeBerg; Marilyn B. Renfree; Willie Taylor; Greg Elgar; R. Daniel Camerini-Otero; Michael J. Gilchrist; James M. A. Turner

In female (XX) mammals one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY)1. X-inactivation in eutherian mammals is mediated by the non-coding RNA Xist2. Xist is not found in metatherians3 and how X-inactivation is initiated in these mammals has been the subject of speculation for decades4. Using the marsupial Monodelphis domestica we identify Rsx (RNA-on-the-silent X), an RNA that exhibits properties consistent with a role in X-inactivation. Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, where both X chromosomes are active, Rsx is silenced, linking Rsx expression to X-inactivation and reactivation. Integration of an Rsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing in cis. Our findings permit comparative studies of X-inactivation in mammals and pose questions about the mechanisms by which X-inactivation is achieved in eutherians.In female (XX) mammals, one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY). X-chromosome inactivation in eutherian mammals is mediated by the non-coding RNA Xist. Xist is not found in metatherians (marsupials), and how X-chromosome inactivation is initiated in these mammals has been the subject of speculation for decades. Using the marsupial Monodelphis domestica, here we identify Rsx (RNA-on-the-silent X), an RNA that has properties consistent with a role in X-chromosome inactivation. Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, in which both X chromosomes are active, Rsx is silenced, linking Rsx expression to X-chromosome inactivation and reactivation. Integration of an Rsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing in cis. Our findings permit comparative studies of X-chromosome inactivation in mammals and pose questions about the mechanisms by which X-chromosome inactivation is achieved in eutherians.


Mammalian Genome | 2002

Characterization of a novel gene adjacent to PAX6, revealing synteny conservation with functional significance

Dirk A. Kleinjan; Anne Seawright; Greg Elgar; Veronica van Heyningen

Abstract. The human eye anomaly aniridia is normally caused by intragenic mutations of PAX6. Several cases of aniridia are, however, associated with chromosomal rearrangements that leave the PAX6 gene intact. We have identified and characterized a novel gene, PAXNEB (C11orf19), downstream (telomeric) of PAX6. Sequence analysis, including interspecies comparisons, show this gene to consist of 10 exons, with an unusually large final intron spanning 134 kb in human and 18 kb in Fugu. This intron is disrupted by each chromosomal rearrangement. The 2-kb PAXNEB transcript, encoding a 424-amino acid protein, is expressed in all cell lines tested. The homologous mouse cDNA is broadly expressed in mouse embryos. PAXNEB is highly conserved from mammals to fish, with some regions of the protein showing conservation to invertebrates, yeast, and plants. The possible role of PAXNEB in aniridia was assessed. Using a transgenic mouse model, we show that the aniridia phenotype of the chromosomal rearrangement cases is not due to the heterozygous loss of PAXNEB function.


Development | 2011

Minor change, major difference: divergent functions of highly conserved cis-regulatory elements subsequent to whole genome duplication events

Debbie K. Goode; Heather Callaway; Gustavo A. Cerda; Katharine E. Lewis; Greg Elgar

Within the vertebrate lineage, a high proportion of duplicate genes have been retained after whole genome duplication (WGD) events. It has been proposed that many of these duplicate genes became indispensable because the ancestral gene function was divided between them. In addition, novel functions may have evolved, owing to changes in cis-regulatory elements. Functional analysis of the PAX2/5/8 gene subfamily appears to support at least the first part of this hypothesis. The collective role of these genes has been widely retained, but sub-functions have been differentially partitioned between the genes in different vertebrates. Conserved non-coding elements (CNEs) represent an interesting and readily identifiable class of putative cis-regulatory elements that have been conserved from fish to mammals, an evolutionary distance of 450 million years. Within the PAX2/5/8 gene subfamily, PAX2 is associated with the highest number of CNEs. An additional WGD experienced in the teleost lineage led to two copies of pax2, each of which retained a large proportion of these CNEs. Using a reporter gene assay in zebrafish embryos, we have exploited this rich collection of regulatory elements in order to determine whether duplicate CNEs have evolved different functions. Remarkably, we find that even highly conserved sequences exhibit more functional differences than similarities. We also discover that short flanking sequences can have a profound impact on CNE function. Therefore, if CNEs are to be used as candidate enhancers for transgenic studies or for multi-species comparative analyses, it is paramount that the CNEs are accurately delineated.


Mammalian Genome | 2003

Comparative analysis of vertebrate Shh genes identifies novel conserved non-coding sequence

Debbie K. Goode; Philip Snell; Greg Elgar

The puffer fish Takifugu rubripes (Fugu), with its compact genome, is an ideal model organism for comparative genomics. Sonic hedgehog (Shh) is a key protein in the patterning of differentiating cells during embryonic development. We have sequenced the Fugu Shh gene and compared it with the mammalian and zebrafish orthologs, identifying a number of novel conserved, non-coding sequences upstream of exon one and within the two introns. Additional conserved sequences serve to delineate activator regions and enhancers previously characterized through functional analysis. Control elements can thus be rapidly and effectively predicted by comparative methodology in its own right as well as complementing other, functional methods. This work demonstrates the value of using Fugu in comparative genomics, which has allowed identification of new putative regulatory elements, as well as corroborating enhancers identified by the more traditional deletion mapping method.


BMC Genomics | 2011

Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers.

Hugo J. Parker; Paul Piccinelli; Tatjana Sauka-Spengler; Marianne E. Bronner; Greg Elgar

BackgroundGene regulation through cis-regulatory elements plays a crucial role in development and disease. A major aim of the post-genomic era is to be able to read the function of cis-regulatory elements through scrutiny of their DNA sequence. Whilst comparative genomics approaches have identified thousands of putative regulatory elements, our knowledge of their mechanism of action is poor and very little progress has been made in systematically de-coding them.ResultsHere, we identify ancient functional signatures within vertebrate conserved non-coding elements (CNEs) through a combination of phylogenetic footprinting and functional assay, using genomic sequence from the sea lamprey as a reference. We uncover a striking enrichment within vertebrate CNEs for conserved binding-site motifs of the Pbx-Hox hetero-dimer. We further show that these predict reporter gene expression in a segment specific manner in the hindbrain and pharyngeal arches during zebrafish development.ConclusionsThese findings evoke an evolutionary scenario in which many CNEs evolved early in the vertebrate lineage to co-ordinate Hox-dependent gene-regulatory interactions that pattern the vertebrate head. In a broader context, our evolutionary analyses reveal that CNEs are composed of tightly linked transcription-factor binding-sites (TFBSs), which can be systematically identified through phylogenetic footprinting approaches. By placing a large number of ancient vertebrate CNEs into a developmental context, our findings promise to have a significant impact on efforts toward de-coding gene-regulatory elements that underlie vertebrate development, and will facilitate building general models of regulatory element evolution.


Developmental Biology | 2012

Lens development depends on a pair of highly conserved Sox21 regulatory elements.

Stefan Pauls; Sarah F. Smith; Greg Elgar

Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.


PLOS ONE | 2011

Functional analysis of conserved non-coding regions around the short stature hox gene (SHOX) in whole zebrafish embryos

Emma J. Kenyon; Gayle McEwen; Heather Callaway; Greg Elgar

Background Mutations in the SHOX gene are responsible for Leri-Weill Dyschondrosteosis, a disorder characterised by mesomelic limb shortening. Recent investigations into regulatory elements surrounding SHOX have shown that deletions of conserved non-coding elements (CNEs) downstream of the SHOX gene produce a phenotype indistinguishable from Leri-Weill Dyschondrosteosis. As this gene is not found in rodents, we used zebrafish as a model to characterise the expression pattern of the shox gene across the whole embryo and characterise the enhancer domains of different CNEs associated with this gene. Methodology/Principal Findings Expression of the shox gene in zebrafish was identified using in situ hybridization, with embryos showing expression in the blood, putative heart, hatching gland, brain pharyngeal arch, olfactory epithelium, and fin bud apical ectodermal ridge. By identifying sequences showing 65% identity over at least 40 nucleotides between Fugu, human, dog and opossum we uncovered 35 CNEs around the shox gene. These CNEs were compared with CNEs previously discovered by Sabherwal et al., resulting in the identification of smaller more deeply conserved sub-sequence. Sabherwal et al.s CNEs were assayed for regulatory function in whole zebrafish embryos resulting in the identification of additional tissues under the regulatory control of these CNEs. Conclusion/Significance Our results using whole zebrafish embryos have provided a more comprehensive picture of the expression pattern of the shox gene, and a better understanding of its regulation via deeply conserved noncoding elements. In particular, we identify additional tissues under the regulatory control of previously identified SHOX CNEs. We also demonstrate the importance of these CNEs in evolution by identifying duplicated shox CNEs and more deeply conserved sub-sequences within already identified CNEs.


Gene | 2000

Identification and analysis of two snail genes in the pufferfish (Fugu rubripes) and mapping of human SNA to 20q.

Sarah Smith; Judith A. Metcalfe; Greg Elgar

All members of the snail gene family are zinc-finger transcription factors expressed early in embryonic development and are involved in the formation of tissues such as mesoderm and presumptive neural crest. Here, we report the identification and structural organisation of two snail genes in the compact genome of the pufferfish Fugu rubripes, and examine the phylogenetic relationships between these and other members of the snail gene family. Both genes have a three exon, two intron structure similar to that previously reported for human SLUG. While human SLUG has been mapped to 8q (Cohen, M.E., Yin, M., Paznekas, W.A., Schertzer, M., Wood, S., Jabs, E.W., 1998. Human SLUG organisation, expression and chromosome map location on 8q. Genomics 51, 468-471), the human sna gene SNA, was previously unmapped. We have used sequence similarity to the Fugu genes to identify a human SNA EST and mapped this by radiation hybrid and physical mapping to the distal end of human 20q. This is likely to be the mapping location of the human sna gene (SNA).

Collaboration


Dive into the Greg Elgar's collaboration.

Top Co-Authors

Avatar

Yvonne J. K. Edwards

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Debbie K. Goode

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Sarah Smith

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Tanya Vavouri

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather Callaway

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina I. Abnizova

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Klaudia Walter

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge