Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg Kopp is active.

Publication


Featured researches published by Greg Kopp.


Solar Physics | 2005

SORCE Contributions to New Understanding of Global Change and Solar Variability

Judith Lean; E. O. Hulburt; Gary J. Rottman; Jerald W. Harder; Greg Kopp

An array of empirical evidence in the space era, and in the past, suggests that climate responds to solar activity. The response mechanisms are thought to be some combination of direct surface heating, indirect processes involving UV radiation and the stratosphere, and modulation of internal climate system oscillations. A quantitative physical description is, as yet, lacking to explain the empirical evidence in terms of the known magnitude of solar radiative output changes and of climate sensitivity to these changes. Reproducing solar-induced decadal climate change requires faster and larger responses than general circulation models allow. Nor is the indirect climatic impact of solar-induced stratospheric change adequately understood, in part because of uncertainties in the vertical coupling of the stratosphere and troposphere. Accounting for solar effects on pre-industrial surface temperatures requires larger irradiance variations than present in the contemporary database, but evidence for significant secular irradiance change is ambiguous. Essential for future progress are reliable, extended observations of the solar radiative output changes that produce climate forcing. Twenty-five years after the beginning of continuous monitoring of the Sun’s total radiative output, the Solar Radiation and Climate Experiment (SORCE) commences a new generation of solar irradiance measurements with much expanded capabilities. Relative to historical solar observations SORCE monitors both total and spectral irradiance with significantly reduced uncertainty and increased repeatability, especially on long time scales. Spectral coverage expands beyond UV wavelengths to encompass the visible and near-IR regions that dominate the Sun’s radiative output. The space-based irradiance record, augmented now with the spectrum of the changes, facilitates improved characterization of magnetic sources of irradiance variability, and the detection of additional mechanisms. This understanding provides a scientific basis for estimating past and future irradiance variations, needed for detecting and predicting climate change.


Bulletin of the American Meteorological Society | 2013

Achieving Climate Change Absolute Accuracy in Orbit

Bruce A. Wielicki; David F. Young; M. G. Mlynczak; Kurt J. Thome; Stephen S. Leroy; James M. Corliss; J. G. Anderson; Chi O. Ao; Richard J. Bantges; Fred A. Best; Kevin W. Bowman; Helen E. Brindley; James J. Butler; William D. Collins; John Andrew Dykema; David R. Doelling; Daniel R. Feldman; Nigel P. Fox; Xianglei Huang; Robert E. Holz; Yi Huang; Zhonghai Jin; D. Jennings; David G. Johnson; K. Jucks; Seima Kato; Daniel Bernard Kirk-Davidoff; Robert O. Knuteson; Greg Kopp; David P. Kratz

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREOs inherently high absolute accuracy will be verified and traceable on orbit to Systeme Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earths thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which...


Solar Physics | 2005

THE TOTAL IRRADIANCE MONITOR (TIM): SCIENCE RESULTS

Greg Kopp; G. M. Lawrence; Gary J. Rottman

The solar observations from the Total Irradiance Monitor (TIM) are discussed since the SOlar Radiation and Climate Experiment (SORCE) launch in January 2003. The TIM measurements clearly show the background disk-integrated solar oscillations of generally less than 50 parts per million (ppm) amplitude over the ∼2 ppm instrument noise level. The total solar irradiance (TSI) from the TIM is about 1361 W/m2, or 4–5 W/m2 lower than that measured by other current TSI instruments. This difference is not considered an instrument or calibration error. Comparisons with other instruments show excellent agreement of solar variability on a relative scale. The TIM observed the Sun during the extreme activity period extending from late October to early November 2003. During this period, the instrument recorded both the largest short-term decrease in the 25-year TSI record and also the first definitive detection of a solar flare in TSI, from which an integrated energy of roughly (6 ± 3) × 1032 ergs from the 28 October 2003 X17 flare is estimated. The TIM has also recorded two planets transiting the Sun, although only the Venus transit on 8 June 2004 was definitive.


Eos, Transactions American Geophysical Union | 2007

Achieving satellite instrument calibration for climate change

George Ohring; Joe Tansock; William J. Emery; James J. Butler; Lawrence E. Flynn; Fuzhong Weng; Karen St. Germain; Bruce A. Wielicki; Changyong Cao; Mitchell D. Goldberg; Jack Xiong; Gerald T. Fraser; David Kunkee; David M. Winker; Laury Miller; Stephen G. Ungar; David C. Tobin; J. G. Anderson; David B. Pollock; Scott T. Shipley; Alan Thurgood; Greg Kopp; Philip E. Ardanuy; Tom Stone

For the most part, satellite observations of climate are not presently sufficiently accurate to establish a climate record that is indisputable and hence capable of determining whether and at what rate the climate is changing. Furthermore, they are insufficient for establishing a baseline for testing long-term trend predictions of climate models. Satellite observations do provide a clear picture of the relatively large signals associated with interannual climate variations such as El Nino-Southern Oscillation (ENSO), and they have also been used to diagnose gross inadequacies of climate models, such as their cloud generation schemes. However, satellite contributions to measuring long-term change have been limited and, at times, controversial, as in the case of differing atmospheric temperature trends derived from the U.S. National Oceanic and Atmospheric Administrations (NOAA) microwave radiometers.


Astronomy and Astrophysics | 2008

Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales

Yvonne C. Unruh; N. A. Krivova; S. K. Solanki; Jerald W. Harder; Greg Kopp

Aims. We test the reliability of the observed and calculated spectral irradiance variations between 200 and 1600 nm over a time span of three solar rotations in 2004. Methods. We compare our model calculations to spectral irradiance observations taken with SORCE/SIM, SoHO/VIRGO, and UARS/SUSIM. The calculations assume LTE and are based on the SATIRE (Spectral And Total Irradiance REconstruction) model. We analyse the variability as a function of wavelength and present time series in a number of selected wavelength regions covering the UV to the NIR. We also show the facular and spot contributions to the total calculated variability. Results. In most wavelength regions, the variability agrees well between all sets of observations and the model calculations. The model does particularly well between 400 and 1300 nm, but fails below 220 nm, as well as for some of the strong NUV lines. Our calculations clearly show the shift from faculae-dominated variability in the NUV to spot-dominated variability above approximately 400 nm. We also discuss some of the remaining problems, such as the low sensitivity of SUSIM and SORCE for wavelengths between approximately 310 and 350 nm, where currently the model calculations still provide the best estimates of solar variability.


Solar Physics | 1992

A relation between magnetic field strength and temperature in sunspots

Greg Kopp; Douglas M. Rabin

We present Stokes I Zeeman splitting measurements of sunspots using the highly sensitive (g = 3) Fe i line at λ = 1.5649 μm. The splittings are compared with simultaneous intensity measurements in the adjacent continuum. The relation between magnetic field strength and temperature has a characteristic, nonlinear shape in all the spots studied. In the umbra, there is an approximately linear relation between B2 and Tb, consistent with magnetohydrostatic equilibrium in a nearly vertical field. A distinct flattening of the B2 vs Tbrelationship in the inner penumbra may be due to changes in the lateral pressure balance as the magnetic field becomes more horizontal; spatially unresolved intensity inhomogeneities may also influence the observed relation.


Solar Physics | 2005

The Total Irradiance Monitor (TIM): Instrument Calibration

Greg Kopp; Karl Heuerman; G. M. Lawrence

The calibrations of the SORCE Total Irradiance Monitor (TIM) are detailed and compared against the designed uncertainty budget. Several primary calibrations were accomplished in the laboratory before launch, including the aperture area, applied radiometer power, and radiometer absorption efficiency. Other parameters are calibrated or tracked on orbit, including the electronic servo system gain, the radiometer sensitivity to background thermal emission, and the degradation of radiometer efficiency. The as-designed uncertainty budget is refined with knowledge from the on-orbit performance.


International Symposium on Optical Science and Technology | 2000

Overview of the EOS SORCE mission

Thomas N. Woods; Gary J. Rottman; Jerald W. Harder; G. M. Lawrence; William E. McClintock; Greg Kopp; Chris Pankratz

The NASA Earth Observing Systems’ (EOS) SOlar Radiation and Climate Experiment (SORCE) mission consists of four instruments aboard a small satellite to measure the total solar irradiance (TSI) and solar spectral irradiance from 1 to 2000 nm. Solar irradiance, being the dominant energy source in the Earths atmosphere, establishes much of the atmospheres chemistry and dynamics. The SORCE measurements will therefore provide the requisite understanding of one of the primary climate system variables for the NASA EOS program. The SORCE primary science data product will be the TSI and solar spectral irradiance on a 6 hour cadence for a period of 5 years or more. The SORCE science team will study how much the solar irradiance varies, how the solar variability affects the Earth’s atmosphere, and how the magnetic structures on the Sun change its irradiance. The SORCE instruments are the Total Irradiance Monitor (TIM), the Spectral Irradiance Monitor (SIM), the SOLar STellar Irradiance Comparison Experiment (SOLSTICE), and the XUV Photometer System (XPS). The TIM is an active cavity radiometer similar in design to previous cavity radiometers, such as the VIRGO, ACRIM, and ERBS instruments, but with significant improvements in sensor and electrical design. TIM will provide a measurement of TSI directly traceable to SI units with an absolute accuracy of 0.01% and relative accuracy of 0.001% per year. The SIM is a Fery prism spectrometer with an Electrical Substitution Radiometer (ESR) as the reference detector and Si and InGaAs photodiodes as the working detectors. SIM will measure the solar spectral irradiance from 200 nm to 2000 nm with a spectral resolution varying from 0.5 nm to 34 nm, an absolute accuracy of 0.03%, and a relative accuracy of 0.006% per year. The SOLSTICE is an improved version of the UARS SOLSTICE instrument, both being ultraviolet (UV) grating spectrometers with photomultiplier tube detectors. SOLSTICE will measure the solar spectral irradiance from 115 nm to 320 nm with a spectral resolution of 0.1-0.2 nm, an absolute accuracy of 5%, and a relative accuracy of 0.5% per year. The XPS is a set of soft x-ray (XUV) photometers, consisting of Si photodiodes with thin-film filters to select moderate spectral bands. XPS will measure the solar spectral irradiance in the XUV (1-31 nm) and at Lyman-? (121.6 nm) with bandwidths of about 5 nm, an absolute accuracy of 20%, and a relative accuracy of 4% per year. Orbital Sciences Corporation is providing the SORCE satellite, a version of their GALEX spacecraft bus tailored for the SORCE mission. The SORCE satellite is a 3-axis stabilized satellite for pointing the instruments towards the Sun for the primary solar measurements as well as for pointing towards stars for the SOLSTICE in-flight calibrations. The SORCE spacecraft is scheduled for a launch on a Pegasus XL in July 2002 into an orbit with a 645 km altitude and 40° inclination.


Metrologia | 2012

Fourth World Radiometric Reference to SI radiometric scale comparison and implications for on-orbit measurements of the total solar irradiance

André Fehlmann; Greg Kopp; Werner Schmutz; Rainer Winkler; Wolfgang Finsterle; Nigel P. Fox

We report the fourth World Radiometric Reference (WRR)-to-SI comparison. At the National Physical Laboratory we compared three transfer pyrheliometer instruments in power mode with the SI radiometric scale. Compared with the three previous comparisons, we improved the experiment by operating the transfer instruments in vacuum. At the Total solar irradiance Radiometer Facility (TRF) located at the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, we repeated the power comparison of one of the transfer instruments. The TRF also allowed the comparison and characterization of this instrument in irradiance mode. Using the WRR comparisons performed in Davos, we find that the WRR is 0.34% higher than the SI scale. Comparing irradiance mode calibrations with power mode calibrations reveals that previous estimates of stray light of PMO6-type radiometers were very low. The instrument calibrated at TRF was integrated in the space experiment PREMOS on the French satellite PICARD and carries the first vacuum irradiance calibration to space.


Metrologia | 2012

Total solar irradiance data record accuracy and consistency improvements

Greg Kopp; André Fehlmann; Wolfgang Finsterle; David Harber; Karl Heuerman; Richard Willson

Continuity of the 33-year long total solar irradiance record has been facilitated by corrections for offsets due to calibration differences between instruments, providing a solar data record with precision approaching that needed for Earth climate studies. Recent laboratory tests have (1) improved measurement absolute accuracy to mitigate potential future data gaps, (2) helped explain the causes of instrument offsets and (3) improved consistency between the international references upon which various instrument calibrations are based.

Collaboration


Dive into the Greg Kopp's collaboration.

Top Co-Authors

Avatar

Karl Heuerman

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

G. M. Lawrence

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Gary J. Rottman

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ginger Drake

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Thomas N. Woods

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jerald W. Harder

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Joey Espejo

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Peter Pilewskie

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Smith

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge