Greg Loeb
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Greg Loeb.
Journal of Insect Science | 2015
Anna Wallingford; Marc Fuchs; Timothy E. Martinson; Steve Hesler; Greg Loeb
Vineyards were surveyed for grapevine leafroll-associated viruses and their insect vectors in New York State’s Finger Lakes region in 2006–2008. Grape mealybug, Pseudococcus maritimus (Erhorn) (Hemiptera: Pseudococcidae), European Fruit Lecanium, Parthenolecanium corni (Bouche), and Cottony Maple Scale, Pulvinaria acericola (Walsh and Riley) (Hemiptera: Coccidae) were identified as vector species in this region. An increase in the incidence of Grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-3 was observed in 8 of the 20 vineyards surveyed, which implies transmission by these insect vectors. Two of the vineyards for which a temporal increase in disease incidence was documented were then used to evaluate the efficacy of foliar applications of horticultural oil and two classes of insecticides for control of P. maritimus and for slowing virus spread over 2 years of vine protection. Delayed dormant applications of horticultural oil contributed to control of early season crawlers; however, this was not the case for control of summer populations. Applications of acetamiprid and spirotetramat achieved control in summer populations; however, spirotetramat outperformed acetamiprid in percent reduction of treated compared with control vines and in a side-by-side trial. Vines treated with spirotetramat had a lower percentage of new vines testing positive for GLRaV-1 than control vines after 2 years, while no other spray program altered the increase in incidence of GLRaV-1 or -3.
Molecular Ecology | 2018
Alyssa Bost; Soeren Franzenburg; Karen L. Adair; Vincent G. Martinson; Greg Loeb; Angela E. Douglas
Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota‐responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution.
Journal of Economic Entomology | 2016
Anna Wallingford; Heather Connelly; Gabrielle Dore Brind'Amour; Matthew T. Boucher; Agenor Mafra-Neto; Greg Loeb
Abstract Spotted-wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is a polyphagous, invasive pest of small fruits. Current management relies heavily on chemical insecticides, and an effective oviposition deterrent could contribute to alternative management approaches that reduce the need for these chemical insecticides. A novel deployment method for repelling Drosophila suzukii, thereby reducing D. suzukii oviposition in fall-bearing red raspberry, was evaluated in the field. Infestations occurring within 4 d after deployment were significantly lower in 2-m-long plots (Rubus idaeus ‘Caroline’) treated with the repellent (20% 1-octen-3-ol in specialized pheromone and lure application technology [SPLAT]) compared to control plots (blank SPLAT). Repellent-treated plots had roughly 28.8 and 49.5% fewer offspring reared per gram of fruit than control plots in two experiments, respectively. Nontarget effects were also evaluated in 2-m plot experiments as well as 5- by 5-m plot experiments. There were no differences in the number of parasitic hymenoptera trapped on yellow sticky cards hung in repellent compared to control plots. While there were no differences in the number of visits to raspberry flowers observed by honey bees in repellent versus control plots, the number of visits by bumble bees was greater in repellent plots compared to control plots. Challenges regarding evaporation rates and potential uses for repellents in an integrated pest management program for the control of D. suzukii are discussed.
Journal of Insect Science | 2010
Lora A. Crampton; Greg Loeb; Kim A. Hoelmer; Michael P. Hoffmann
Abstract To improve biological control of Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), the European parasitoid Peristenus digoneutis Loan (Hymenoptera: Braconidae) was introduced into the US in the 1980s and has become established in forage alfalfa, strawberries and apples. The objective of this study was to determine how four different insecticide management regimes affected parasitism of L. lineolaris by Peristenus spp. During the summers of 2005 and 2006, L. lineolaris nymphs were collected from New York State apple orchards using industry standard, reduced risk, and organically approved insecticides only. A ‘no insecticide’ (abandoned orchard) treatment was also included in 2006. Rates of parasitism of L. lineolaris nymphs were determined using a DNA-based laboratory technique. Results indicated that insecticide treatment had a significant effect on rates of parasitism of L. lineolaris by Peristenus spp. Compared to the industry standard treatment, rates of parasitism were higher in reduced risk orchards and lower in organic orchards. These results suggest that it is difficult to predict a priori the consequences of insecticide programs and point to the need to take into consideration the specific pests and beneficial organisms involved as well as the crop and the specific insecticides being applied.
Archive | 2012
Rufus Isaacs; Luis A Teixeira; Paul E. Jenkins; Natalia Botero Neerdaels; Greg Loeb; Michael C. Saunders
The grape berry moth, Paralobesia viteana (Clemens), is one of the most widespread and damaging insect pest of grapes in eastern North America. It was renamed from Endopiza viteana Clemens (Brown 2006). Larvae (Fig. 15.1c) of this pest bore into berries causing direct injury, reducing yield, and opening berries to opportunistic pathogens (Fig. 15.1d). Where this pest reaches high populations, berries may not be harvestable due to contamination by larvae or diseases that reduce fruit quality, forcing grape growers to leave heavily-infested regions of vineyards unharvested. In the past 50 years, prevention of damage and infestation by grape berry moth has been achieved primarily by the use of broad-spectrum insecticides, but increased restrictions on these chemicals in food crops and the risk of resistance to insecticides continues to stimulate the search for alternative control methods. This review includes the current status of knowledge about the biology of P. viteana and management strategies for its control. An earlier review of this pest and its management is provided by Dennehy et al. (1990a). We also refer readers to Ioriatti et al. (Chap. 14) for comparison with European species of berry-infesting Lepidoptera. In this chapter, we highlight future research opportunities that may improve the sustainability of vineyard integrated pest management programs while reducing crop damage from P. viteana.
Scientific Reports | 2017
Heather Grab; Eleanor J. Blitzer; Bryan N. Danforth; Greg Loeb; Katja Poveda
One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation.
Ecological Applications | 2018
Heather Grab; Bryan N. Danforth; Katja Poveda; Greg Loeb
Agricultural intensification resulting in the simplification of agricultural landscapes is known to negatively impact the delivery of key ecosystem services such as the biological control of crop pests. Both conservation and classical biological control may be influenced by the landscape context in which they are deployed; yet studies examining the role of landscape structure in the establishment and success of introduced natural enemies and their interactions with native communities are lacking. In this study, we investigated the relationship between landscape simplification, classical and conservation biological control services and importantly, the outcome of these interactions for crop yield. We showed that agricultural simplification at the landscape scale is associated with an overall reduction in parasitism rates of crop pests. Additionally, only introduced parasitoids were identified, and no native parasitoids were found in crop habitat, irrespective of agricultural landscape simplification. Pest densities in the crop were lower in landscapes with greater proportions of semi-natural habitats. Furthermore, farms with less semi-natural cover in the landscape and consequently, higher pest numbers, had lower yields than farms in less agriculturally dominated landscapes. Our study demonstrates the importance of landscape scale agricultural simplification in mediating the success of biological control programs and highlights the potential risks to native natural enemies in classical biological control programs against native insects. Our results represent an important contribution to an understanding of the landscape-mediated impacts on crop yield that will be essential to implementing effective policies that simultaneously conserve biodiversity and ecosystem services.
Journal of Economic Entomology | 2012
Rufus Isaacs; Keith S. Mason; Luís A. F. Teixeira; Greg Loeb; Steve Hesler; Tim Weigle; Andy Muza; Jody Timer; Michael C. Saunders
ABSTRACT Over two growing seasons, Isomate GBM-Plus tube-type dispensers releasing the major pheromone component of grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), were evaluated in vineyards (Vitis spp.) in Michigan, New York, and Pennsylvania. Dispensers were deployed in three different density-arrangement treatments: 124 dispensers per ha, 494 dispensers per ha, and a combined treatment with 124 dispensers per ha in the vineyard interior and 988 dispensers per ha at the vineyard border, equivalent to an overall density of 494 dispensers per ha. Moth captures and cluster infestation levels were compared at the perimeter and interior of vineyards receiving these different pheromone treatments and in vineyards receiving no pheromone. Orientation of male moths to pheromone-baited traps positioned at the perimeter and interior of vineyards was reduced as a result of mating disruption treatments compared with the nontreated control. These findings were consistent over both years of the study. Disruption of male moth captures in traps varied from 93 to 100% in treated vineyards, with the 494 dispensers per ha application rates providing significantly higher level of disruption than the 124 dispensers per ha rate, but only in 2007. Measurements of percentage of cluster infestation indicated much higher infestation at perimeters than in the interior of the vineyards in all three regions, but in both sample positions there was no significant effect of dispenser density on cluster infestation levels in either year. The contrasting results of high disruption of moth orientation to traps in vineyards that also had low levels of crop protection from this pheromone treatment are discussed in the context of strategies to improve mating disruption of this tortricid pest.
Proceedings of the Royal Society B: Biological Sciences | 2018
Heather Grab; Katja Poveda; Bryan N. Danforth; Greg Loeb
In the face of global biodiversity declines driven by agricultural intensification, local diversification practices are broadly promoted to support farmland biodiversity and multiple ecosystem services. The creation of flower-rich habitats on farmland has been subsidized in both the USA and EU to support biodiversity and promote delivery of ecosystem services. Yet, theory suggests that the landscape context in which local diversification strategies are implemented will influence their success. However, few studies have empirically evaluated this theory or assessed the ability to support multiple ecosystem services simultaneously. Here, we evaluate the impact of creating flower-rich habitats in field margins on pollination, pest control, and crop yield over 3 years using a paired design across a landscape gradient. We find general positive effects of natural habitat cover on fruit weight and that flowering borders increase yields by promoting bee visitation to adjacent crops only in landscapes with intermediate natural habitat cover. Flowering borders had little impact on biological control regardless of landscape context. Thus, knowledge of landscape context can be used to target wildflower border placement in areas where they will have the greatest likelihood for success and least potential for increasing pest populations or yield loss in nearby crops.
Global Change Biology | 2008
Patrick C. Tobin; Sudha Nagarkatti; Greg Loeb; Michael C. Saunders