Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg M. Madejski is active.

Publication


Featured researches published by Greg M. Madejski.


The Astrophysical Journal | 2013

The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission

Fiona A. Harrison; William W. Craig; Finn Erland Christensen; Charles J. Hailey; William W. Zhang; Steven E. Boggs; Daniel Stern; W. Rick Cook; Karl Forster; Paolo Giommi; Brian W. Grefenstette; Yunjin Kim; Takao Kitaguchi; Jason E. Koglin; Kristin K. Madsen; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff; S. Puccetti; V. Rana; Niels Jørgen Stenfeldt Westergaard; Jason Willis; Andreas Zoglauer; Hongjun An; Matteo Bachetti; Eric C. Bellm; Varun Bhalerao; Nicolai F. Brejnholt

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporations LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.


Publications of the Astronomical Society of Japan | 2007

Hard X-ray Detector (HXD) on board Suzaku

Tadayuki Takahashi; Keiichi Abe; Manabu Endo; Yasuhiko Endo; Yuuichiro Ezoe; Yasushi Fukazawa; Masahito Hamaya; Shinya Hirakurl; Soojing Hong; M. Horii; H. Inoue; Naoki Isobe; Takeshi Itoh; N. Iyomoto; Tuneyoshi Kamae; Daisuke Kasama; J. Kataoka; Hiroshi Kato; Madoka Kawaharada; Naomi Kawano; Kengo Kawashima; S. Kawasoe; Tetsuichi Klshishita; Takao Kltaguchi; Motohide Kokubun; Jun'ichi Kotoku; M. Kouda; Aya Kubota; Yoshikatsu Kuroda; Greg M. Madejski

The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from 10 keV to 600 keV by combination of silicon PIN diodes and GSO scintillators. The HXD is designed to achieve an extremely low in-orbit back ground based on a combination of new techniques, including the concept of well-type active shield counter. With an effective area of 142 cm^2 at 20 keV and 273 cm2 at 150 keV, the background level at the sea level reached ~1x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 30 keV for the PI N diodes, and ~2x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 100 keV, and ~7x10^{-6} cts s^{-1} cm^{-2} keV^{-1} at 200 keV for the phoswich counter. Tight active shielding of the HXD results in a large array of guard counters surrounding the main detector parts. These anti-coincidence counters, made of ~4 cm thick BGO crystals, have a large effective area for sub-MeV to MeV gamma-rays. They work as an excellent gamma-ray burst monitor with limited angular resolution (~5 degree). The on-board signal-processing system and the data transmitted to the ground are also described.


Publications of the Astronomical Society of Japan | 2007

In-orbit performance of the hard X-ray detector on board Suzaku

Motohide Kokubun; Kazuo Makishima; Tadayuki Takahashi; Toshio Murakami; Makoto Tashiro; Yasushi Fukazawa; Tuneyoshi Kamae; Greg M. Madejski; Kazuhiro Nakazawa; Kazutaka Yamaoka; Yukikatsu Terada; Daisuke Yonetoku; Shin Watanabe; Toru Tamagawa; T. Mizuno; Aya Kubota; Naoki Isobe; Isao Takahashi; Goro Sato; H. Takahashi; Soojing Hong; Madoka Kawaharada; Naomi Kawano; Takefumi Mitani; Mio Murashima; Masaya Suzuki; Keiichi Abe; Ryouhei Miyawaki; M. Ohno; T. Tanaka

The in-orbit performance and calibration of the Hard X-ray Detector (HXD) on board the X-ray astronomy satellite Suzaku are described. Its basic performances, including a wide energy bandpass of 10–600keV, energy resolutions of ∼ 4keV (FWHM) at 40keV and ∼ 11% at 511keV, and a high background rejection efficiency, have been confirmed by extensive in-orbit calibrations. The long-term gains of PIN-Si diodes have been stable within 1% for half a year, and those of scintillators have decreased by 5–20%. The residual non-X-ray background of the HXD is the lowest among past non-imaging hard X-ray instruments in energy ranges of 15–70 and 150–500keV. We provide accurate calibrations of energy responses, angular responses, timing accuracy of the HXD, and relative normalizations to the X-ray CCD cameras using multiple observations of the Crab Nebula.


The Astrophysical Journal | 2009

Constraining Emission Models of Luminous Blazar Sources

Marek Sikora; Ł. Stawarz; Rafal Moderski; Krzysztof Nalewajko; Greg M. Madejski

Many luminous blazars which are associated with quasar-type active galactic nuclei display broadband spectra characterized by a large luminosity ratio of their high-energy (γ-ray) and low-energy (synchrotron) spectral components. This large ratio, reaching values up to 100, challenges the standard synchrotron self-Compton models by means of substantial departures from the minimum power condition. Luminous blazars also typically have very hard X-ray spectra, and those in turn seem to challenge hadronic scenarios for the high-energy blazar emission. As shown in this paper, no such problems are faced by the models which involve Comptonization of radiation provided by a broad-line region, or dusty molecular torus. The lack or weakness of bulk-Compton and Klein-Nishina features indicated by the presently available data favors the production of γ-rays via upscattering of infrared photons from hot dust. This implies that the blazar emission zone is located at parsec-scale distances from the nucleus, and as such is possibly associated with the extended, quasi-stationary reconfinement shocks formed in relativistic outflows. This scenario predicts characteristic timescales for flux changes in luminous blazars to be days/weeks, consistent with the variability patterns observed in such systems at infrared, optical, and γ-ray frequencies. We also propose that the parsec-scale blazar activity can be occasionally accompanied by dissipative events taking place at sub-parsec distances and powered by internal shocks and/or reconnection of magnetic fields. These could account for the multiwavelength intraday flares occasionally observed in powerful blazar sources.


The Astrophysical Journal | 2005

Are Quasar Jets Dominated by Poynting Flux

Marek Sikora; Mitchell C. Begelman; Greg M. Madejski; Jean-Pierre Lasota

The formation of relativistic astrophysical jets is presumably mediated by magnetic fields threading accretion disks and central, rapidly rotating objects. As it is accelerated by magnetic stresses, the jets kinetic energy flux grows at the expense of its Poynting flux. However, it is unclear how efficient the conversion from magnetic to kinetic energy is and whether there are any observational signatures of this process. We address this issue in the context of jets in quasars. Using data from all spatial scales, we demonstrate that in these objects the conversion from Poynting flux-dominated to matter-dominated jets is very likely to take place closer to the black hole than in the region where most of the Doppler-boosted radiation observed in blazars is produced. We briefly discuss the possibility that blazar activity could be induced by global MHD instabilities, e.g., via the production of localized velocity gradients that lead to dissipative events such as shocks or magnetic reconnection, in which acceleration of relativistic particles and production of nonthermal flares is taking place.


The Astrophysical Journal | 2001

Characteristic X-Ray Variability of TeV Blazars: Probing the Link between the Jet and the Central Engine

J. Kataoka; Tadayuki Takahashi; S. J. Wagner; Naoko Iyomoto; Philip G. Edwards; Kiyoshi Hayashida; Susumu Inoue; Greg M. Madejski; Fumio Takahara; Chiharu Tanihata; Nobuyuki Kawai

We have studied the rapid X-ray variability of three extragalactic TeV γ-ray sources: Mrk 421, Mrk 501, and PKS 2155-304. Analyzing the X-ray light curves obtained from ASCA and/or Rossi X-Ray Timing Explorer observations between 1993 and 1998, we have investigated the variability in the time domain from 103 to 108 s. For all three sources, both the power spectrum density (PSD) and the structure function (SF) show a rollover with a timescale of the order of 1 day or longer, which may be interpreted as the typical timescale of successive flare events. Although the exact shape of turnover is not well constrained and the low-frequency (long timescale) behavior is still unclear, the high-frequency (short timescale) behavior is clearly resolved. We found that, on timescales shorter than 1 day, there is only small power in the variability, as indicated by a steep power spectrum density of f-2~-3. This is very different from other types of mass-accreting black hole systems, for which the short-timescale variability is well characterized by a fractal, flickering-noise PSD (f-1~-2). The steep PSD index and the characteristic timescale of flares imply that the X-ray-emitting site in the jet is of limited spatial extent: D ≥ 1017 cm distant from the base of the jet, which corresponds to ≥102 Schwarzschild radii for 107-10 M☉ black hole systems.


Proceedings of SPIE | 2010

The Nuclear Spectroscopic Telescope Array (NuSTAR)

Fiona A. Harrison; S. E. Boggs; Finn Erland Christensen; William W. Craig; Charles J. Hailey; Daniel Stern; William W. Zhang; Lorella Angelini; Hongjun An; Varun Bhalerao; Nicolai F. Brejnholt; Lynn R. Cominsky; W. Rick Cook; Melania Doll; P. Giommi; Brian W. Grefenstette; A. Hornstrup; V. M. Kaspi; Yunjin Kim; Takeo Kitaguchi; Jason E. Koglin; Carl Christian Liebe; Greg M. Madejski; Kristin K. Madsen; Peter H. Mao; David L. Meier; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried out in fields with excellent multiwavelength coverage, understanding the population of compact objects and the nature of the massive black hole in the center of the Milky Way, constraining the explosion dynamics and nucleosynthesis in supernovae, and probing the nature of particle acceleration in relativistic jets in active galactic nuclei. A number of additional observations will be included in the primary mission, and a guest observer program will be proposed for an extended mission to expand the range of scientic targets. The payload consists of two co-aligned depth-graded multilayer coated grazing incidence optics focused onto a solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus rocket into a low-inclination Earth orbit, NuSTAR largely avoids SAA passage, and will therefore have low and stable detector backgrounds. The telescope achieves a 10.14-meter focal length through on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFCs High Energy Archive Research Center (HEASARC) following validation at the science operations center located at Caltech.


The Astrophysical Journal | 2002

On the Nature of MeV Blazars

Marek Sikora; Michal Blazejowski; Rafal Moderski; Greg M. Madejski

Broadband spectra of the flat-spectrum radio quasars (FSRQs) detected in the high-energy γ-ray band imply that there may be two types of such objects: those with steep γ-ray spectra, hereafter called MeV blazars, and those with flat γ-ray spectra, GeV blazars. We demonstrate that this difference can be explained in the context of the external radiation Compton (ERC) model using the same electron injection function. A satisfactory unification is reachable, provided that (1) spectra of GeV blazars are produced by internal shocks formed at the distances where cooling of relativistic electrons in a jet is dominated by Comptonization of broad emission lines, whereas spectra of MeV blazars are produced at the distances where cooling of relativistic electrons is dominated by Comptonization of near-IR radiation from hot dust, and (2) electrons are accelerated via a two-step process and their injection function takes the form of a double power law, with the break corresponding to the threshold energy for the diffusive shock acceleration. Direct predictions of our model are that, on average, variability timescales of the MeV blazars should be longer than variability timescales of the GeV blazars, and that both types of the blazar phenomenon can appear in the same object.


The Astrophysical Journal | 2005

Intrinsic curvature in the X-ray spectra of BL lacertae objects

Eric S. Perlman; Greg M. Madejski; Markos Georganopoulos; Karl E. Andersson; Timothy Daugherty; Julian H. Krolik; Travis A. Rector; John T. Stocke; Anuradha P. Koratkar; S. J. Wagner; Margo F. Aller; Hugh D. Aller; Mark G. Allen

We report results from XMM-Newton observations of 13 X-ray bright BL Lacertae objects, selected from the Einstein Slew Survey sample (SSS). The survey was designed to look for evidence of departures of the X-ray spectra from a simple power-law shape (i.e., curvature and/or line features) and to find objects worthy of deeper study. Our data are generally well fit by power-law models, with three cases having hard (? < 2; dN/dE E-?) spectra that indicate synchrotron peaks at E 5 keV. Previous data had suggested a presence of absorption features in the X-ray spectra of some BL Lac objects. In contrast, none of these spectra show convincing examples of line features in either absorption or emission, suggesting that such features are rare among BL Lac objects, or, more likely, are artifacts caused by instrumental effects. We find significant evidence for intrinsic curvature [steepening by d?/d(log E) = 0.4 ? 0.15] in 14 of the 17 X-ray spectra. This cannot be explained satisfactorily via excess absorption, since the curvature is essentially constant from 0.5-6 keV, an observation that is inconsistent with the modest amounts of absorption that would be required. We use the XMM-Newton Optical Monitor data with concurrent radio monitoring to derive broadband spectral energy distributions and peak frequency estimates. From these, we examine models of synchrotron emission and model the spectral curvature we see as the result of episodic particle acceleration.


The Astrophysical Journal | 2015

MERGER-DRIVEN FUELING OF ACTIVE GALACTIC NUCLEI: SIX DUAL AND OF AGNs DISCOVERED WITH CHANDRA AND HUBBLE SPACE TELESCOPE OBSERVATIONS

Julia M. Comerford; David Pooley; R. Scott Barrows; Jenny E. Greene; Nadia L. Zakamska; Greg M. Madejski; Michael C. Cooper

Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at , where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation kpc, where the two stellar bulges have coincident [O iii] ?5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O iii] ?5007 luminosity, on average. This could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

Collaboration


Dive into the Greg M. Madejski's collaboration.

Top Co-Authors

Avatar

Tadayuki Takahashi

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marek Sikora

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Motohide Kokubun

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge