Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg Parsonage is active.

Publication


Featured researches published by Greg Parsonage.


Nature | 1999

RGD peptides induce apoptosis by direct caspase-3 activation

Christopher D. Buckley; Darrell Pilling; Nick V. Henriquez; Greg Parsonage; Katy Threlfall; Dagmar Scheel-Toellner; David L. Simmons; Arne N. Akbar; Janet M. Lord; Mike Salmon

Synthetic peptides containing the arginine–glycine–aspartate (RGD) motif have been used extensively as inhibitors of integrin–ligand interactions in studies of cell adhesion, migration, growth and differentiation,,, because the RGD motif is an integrin-recognition motif found in many ligands. Here we report that RGD-containing peptides are able to directly induce apoptosis without any requirement for integrin-mediated cell clustering or signals. We show that RGD-containing peptides enter cells and directly induce autoprocessing and enzymatic activity of pro-caspase-3, a pro-apoptotic protein. Using the breast carcinoma cell line MCF-7, which has a functional deletion of the caspase-3 gene, we confirm that caspase-3 is required for RGD-mediated cell death. In addition to an RGD motif, pro-caspase-3 also contains a potential RGD-binding motif, aspartate–aspartate–methionine (DDM), near the site of processing to produce the p12 and p17 subunits. On the basis of the ability of RGD–DDX interactions to trigger integrin activation, we suggest that RGD peptides induce apoptosis by triggering conformational changes that promote pro-caspase-3 autoprocessing and activation. These findings provide an alternative molecular explanation for the potent pro-apoptotic properties of RGD peptides in models of angiogenesis, inflammation and cancer metastasis,,.


Thrombosis and Haemostasis | 2003

Global gene expression profiles in fibroblasts from synovial, skin and lymphoid tissue reveals distinct cytokine and chemokine expression patterns

Greg Parsonage; Francesco Falciani; Angela Burman; Andrew Filer; Ewan A. Ross; Margarita Bofill; Stuart Martin; Mike Salmon; Christopher D. Buckley

We investigated the extent to which fibroblasts isolated from diverse tissues differ in their capacity to modulate inflammation by comparing the global gene expression profiles of cultured human fibroblasts from skin, acute and chronically inflamed synovium, lymph node and tonsil. The responses of these fibroblasts to TNF-alpha, IFN-gamma and IL-4 stimulation were markedly different, as revealed by hierarchical cluster analysis and principal component analysis. In the absence of exogenous cytokine, synovial and skin fibroblasts exhibited similar patterns of gene expression. However their transcriptional profiles diverged upon treatment with TNF-alpha. This proved to be biologically relevant, as TNF-alpha induced the secretion of different patterns and amounts of IL-6, IL-8 and CCL2 (MCP-1) in the two fibroblast types. Co-culture of skin or synovial fibroblasts with synovial fluid-derived mononuclear cells provided further evidence that these transcriptional differences were functionally significant in an ex vivo setting. Interestingly, the transcriptional response of skin fibroblasts to IL-4 converged with that of TNF-alpha-treated synovial fibroblasts, suggesting resident tissue fibroblasts and their blood-borne precursors may be imprinted by inflammatory cytokines that are characteristic of different tissues. Our data supports the concept that fibroblasts are heterogeneous, and that they contribute to the tissue-specificity of inflammatory reactions. Fibroblasts are therefore likely to play an active role in the persistence of chronic inflammatory reactions.


Arthritis & Rheumatism | 2009

Galectin 3 Induces a Distinctive Pattern of Cytokine and Chemokine Production in Rheumatoid Synovial Fibroblasts via Selective Signaling Pathways

Andrew Filer; Magdalena Bik; Greg Parsonage; John Fitton; Emily Trebilcock; Katherine Howlett; Michelle Cook; Karim Raza; David L. Simmons; Andrew M.C. Thomas; Mike Salmon; Dagmar Scheel-Toellner; Janet M. Lord; Gabriel A. Rabinovich; Christopher D. Buckley

OBJECTIVE High expression of galectin 3 at sites of joint destruction in rheumatoid arthritis (RA) suggests that galectin 3 plays a role in RA pathogenesis. Previous studies have demonstrated the effects of galectins on immune cells, such as lymphocytes and macrophages. This study was undertaken to investigate the hypothesis that galectin 3 induces proinflammatory effects in RA by modulating the pattern of cytokine and chemokine production in synovial fibroblasts. METHODS Matched samples of RA synovial and skin fibroblasts were pretreated with galectin 3 or tumor necrosis factor alpha (TNFalpha), and the levels of a panel of cytokines, chemokines, and matrix metalloproteinases (MMPs) were determined using enzyme-linked immunosorbent assays and multiplex assays. Specific inhibitors were used to dissect signaling pathways, which were confirmed by Western blotting and NF-kappaB activation assay. RESULTS Galectin 3 induced secretion of interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor, CXCL8, and MMP-3 in both synovial and skin fibroblasts. By contrast, galectin 3-induced secretion of TNFalpha, CCL2, CCL3, and CCL5 was significantly greater in synovial fibroblasts than in skin fibroblasts. TNFalpha blockade ruled out autocrine TNFalpha-stimulated induction of chemokines. The MAPKs p38, JNK, and ERK were necessary for IL-6 production, but phosphatidylinositol 3-kinase (PI 3-kinase) was required for selective CCL5 induction. NF-kappaB activation was required for production of both IL-6 and CCL5. CONCLUSION Our findings indicate that galectin 3 promotes proinflammatory cytokine secretion by tissue fibroblasts. However, galectin 3 induces the production of mononuclear cell-recruiting chemokines uniquely from synovial fibroblasts, but not matched skin fibroblasts, via a PI 3-kinase signaling pathway. These data provide further evidence of the role of synovial fibroblasts in regulating the pattern and persistence of the inflammatory infiltrate in RA and suggest a new and important functional consequence of the observed high expression of galectin 3 in the rheumatoid synovium.


Arthritis Research & Therapy | 2006

Differential expression, function and response to inflammatory stimuli of 11β-hydroxysteroid dehydrogenase type 1 in human fibroblasts: a mechanism for tissue-specific regulation of inflammation

Rowan Hardy; Andrew Filer; Mark S. Cooper; Greg Parsonage; Karim Raza; Debbie L. Hardie; Elizabeth Rabbitt; Paul M. Stewart; Christopher D. Buckley; Martin Hewison

Stromal cells such as fibroblasts play an important role in defining tissue-specific responses during the resolution of inflammation. We hypothesized that this involves tissue-specific regulation of glucocorticoids, mediated via differential regulation of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Expression, activity and function of 11β-HSD1 was assessed in matched fibroblasts derived from various tissues (synovium, bone marrow and skin) obtained from patients with rheumatoid arthritis or osteoarthritis. 11β-HSD1 was expressed in fibroblasts from all tissues but mRNA levels and enzyme activity were higher in synovial fibroblasts (2-fold and 13-fold higher mRNA levels in dermal and synovial fibroblasts, respectively, relative to bone marrow). Expression and activity of the enzyme increased in all fibroblasts following treatment with tumour necrosis factor-α or IL-1β (bone marrow: 8-fold and 37-fold, respectively, compared to vehicle; dermal fibroblasts: 4-fold and 14-fold; synovial fibroblasts: 7-fold and 31-fold; all P < 0.01 compared with vehicle). Treatment with IL-4 or interferon-γ was without effect, and there was no difference in 11β-HSD1 expression between fibroblasts (from any site) obtained from patients with rheumatoid arthritis or osteoarthritis. In the presence of 100 nmol/l cortisone, IL-6 production – a characteristic feature of synovial derived fibroblasts – was significantly reduced in synovial but not dermal or bone marrow fibroblasts. This was prevented by co-treatment with an 11β-HSD inhibitor, emphasizing the potential for autocrine activation of glucocorticoids in synovial fibroblasts. These data indicate that differences in fibroblast-derived glucocorticoid production (via the enzyme 11β-HSD1) between cells from distinct anatomical locations may play a key role in the predeliction of certain tissues to develop persistent inflammation.


European Urology | 2012

T Lymphocyte Recruitment into Renal Cell Carcinoma Tissue: A Role for Chemokine Receptors CXCR3, CXCR6, CCR5, and CCR6

Kimberley A. Oldham; Greg Parsonage; Rupesh I. Bhatt; D. Michael A. Wallace; Nayneeta Deshmukh; Shalini Chaudhri; David H. Adams; Steven P. Lee

BACKGROUND Evidence suggests that some patients with renal cell carcinoma (RCC) respond to immunomodulatory therapies that activate T lymphocytes. A prerequisite for effective T cell therapy is efficient targeting of effector T cells to the tumour site, yet the molecular basis of T cell recruitment to RCC is unknown. Furthermore, some T cells that naturally infiltrate this cancer are regulatory T cells (Tregs) that may suppress antitumour immune responses. OBJECTIVE Determine the mechanisms of effector and regulatory T cell recruitment to RCC to allow targeted therapy that promotes local anti-tumour immunity. DESIGN, SETTING, AND PARTICIPANTS Tumour-infiltrating and peripheral blood T cells were collected from 70 patients undergoing nephrectomy for RCC. MEASUREMENTS T cells were analysed by multicolour flow cytometry for expression of 19 chemokine receptors and 7 adhesion molecules. Receptors that were expressed at higher levels on tumour-infiltrating lymphocytes (TILs) compared with matched peripheral blood lymphocytes (PBLs) were analysed further for their ability to mediate migration responses in TILs and for expression of corresponding ligands in tumour tissue. RESULTS AND LIMITATIONS Three chemokine receptors-CCR5, CXCR3, and CXCR6-were significantly overexpressed on TILs compared with matched PBLs (n=16 cases) and were capable of promoting migration in vitro. Their corresponding ligands CCL4-5, CXCL9-11, and CXCL16 were all detected in RCC tissue. However, since they were present in all cases studied, it was not possible to correlate ligand expression with levels of T cell infiltration. Foxp3(+) Tregs were enriched within TILs compared with matched PBLs and expressed high levels of CCR5, CXCR3, and CXCR6, as well as CCR6, the ligand for which (CCL20) was detectable in RCC tissue. CONCLUSIONS Our data support a role for CCR5, CXCR3, and CXCR6 in the selective recruitment of T cells into RCC tissue and, together with CCR6, in the recruitment of Tregs.


Arthritis & Rheumatism | 2008

Mediation of the proinflammatory cytokine response in rheumatoid arthritis and spondylarthritis by interactions between fibroblast-like synoviocytes and natural killer cells

Antoni Chan; Andrew Filer; Greg Parsonage; S Kollnberger; Roger Gundle; Christopher D. Buckley; Paul Bowness

OBJECTIVE Fibroblast-like synoviocytes (FLS) are potentially directly involved in the propagation of inflammation. We have previously shown evidence of an expanded activated population of natural killer (NK) cells in spondylarthritis (SpA) patients. In the present study, we sought to determine whether the interaction between NK cells and FLS from SpA patients results in a proinflammatory response. METHODS Autologous NK cells and FLS were obtained from 6 patients with SpA, 4 patients with rheumatoid arthritis (RA), and 8 patients with osteoarthritis (OA). Physical interactions between NK cells and FLS were studied by time-lapse phase-contrast microscopy. Fluorescence-activated cell sorting was used to study the activation, proliferation, and survival of NK cells in contact with FLS. Cytokine and stromal factor production were measured by a multiple cytokine bead assay. RESULTS NK cells both adhered to and migrated beneath the FLS monolayer (pseudoemperipolesis). FLS from SpA and RA patients supported increased pseudoemperipolesis, activation, cytokine production, and survival of NK cells. The production of proinflammatory cytokines, including interleukin-6 (IL-6), IL-8, IL-1beta, and IL-15, was increased in cocultures of NK cells and FLS, particularly in those from RA and SpA patients. Production of interferon-gamma, RANTES, and matrix metalloproteinase 3 (MMP-3) by NK cell and FLS coculture was greatest in SpA patients. Surface expression of IL-15 on FLS was significantly increased in SpA and RA patients, but not OA patients. Blockade with an IL-15 monoclonal antibody resulted in increased apoptosis of NK cells. CONCLUSION FLS promote the migration, activation, and survival of NK cells. The interaction of NK cells with FLS results in increased IL-15 expression by FLS and the production of proinflammatory chemokines, cytokines, and MMPs, which may contribute to joint inflammation. This response was much more marked in SpA and RA patients as compared with OA patients.


American Journal of Pathology | 2012

CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma

Greg Parsonage; Lee Machado; Jan Wai Ying Hui; Andrew McLarnon; Tilo T Schmaler; Meenarani Balasothy; Ka Fai To; Alexander C. Vlantis; Charles Andrew van Hasselt; Kwok Wai Lo; Wai Lap Wong; Edwin P. Hui; Anthony T.C. Chan; Steven P. Lee

The substantial T lymphocyte infiltrate found in cases of nasopharyngeal carcinoma (NPC) has been implicated in the promotion of both tumor growth and immune escape. Conversely, because malignant NPC cells harbor the Epstein-Barr virus, this tumor is a candidate for virus-specific T cell-based therapies. Preventing the accumulation of tumor-promoting T cells or enhancing the recruitment of tumor-specific cytotoxic T cells offers therapeutic potential. However, the mechanisms involved in T cell recruitment to this tumor are poorly understood. Comparing memory T cell subsets that have naturally infiltrated NPC tissue with their counterparts from matched blood revealed enrichment of CD8(+), CD4(+), and regulatory T cells expressing the chemokine receptor CXCR6 in tumor tissue. CD8(+) and (nonregulatory) CD4(+) T cells also were more frequently CCR5(+) in tumor than in blood. Ex vivo studies demonstrated that both receptors were functional. CXCL16 and CCL4, unique chemokine ligands for CXCR6 and CCR5, respectively, were expressed by the malignant cells in tumor tissue from the majority of NPC cases, as was another CCR5 ligand, CCL5. The strongest expression of CXCL16 was found on tumor-infiltrating cells. CCL4 was detected on the tumor vasculature in a majority of cases. These findings suggest that CXCR6 and CCR5 play important roles in T cell recruitment and/or retention in NPC and have implications for the pathogenesis and treatment of this tumor.


PLOS ONE | 2015

Stromal Transcriptional Profiles Reveal Hierarchies of Anatomical Site, Serum Response and Disease and Identify Disease Specific Pathways

Andrew Filer; Philipp Antczak; Greg Parsonage; Holly M. Legault; Margot O’Toole; Mark Pearson; Andrew M.C. Thomas; Dagmar Scheel-Toellner; Karim Raza; Christopher D. Buckley; Francesco Falciani

Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through _3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts.


Future Rheumatology | 2006

Roles of galectins in chronic inflammatory microenvironments

Greg Parsonage; Emily Trebilcock; Marta A. Toscano; Germán A. Bianco; Juan M. Ilarregui; Christopher D. Buckley; Gabriel A. Rabinovich

Lectins are multifunctional carbohydrate-binding proteins that can recognize various carbohydrates on cell surfaces and extracellular matrix, and are involved in several biological processes. Galectins, a family of animal lectins with affinity for β-galactoside-containing oligosaccharides, are expressed by several cells of the immune system and tissue-resident stromal cells. Increasingly, experimental evidence indicates that galectins might play critical regulatory roles in cancer, fibrosis and chronic inflammatory disorders, such as rheumatoid arthritis. In this review, we summarize recent developments in our understanding of the galectins’ roles within particular cells, and in the broader context of the inflammatory or tumor microenvironments. This body of knowledge, documenting the coming-of-age of galectins as potential immunosuppressive agents or targets for anti-inflammatory drugs, represents a sound basis to further explore their immunoregulatory properties in the development of novel therapies for...


Trends in Immunology | 2005

A stromal address code defined by fibroblasts

Greg Parsonage; Andrew Filer; Oliver Haworth; Gerard B. Nash; G. Ed Rainger; Michael Salmon; Christopher D. Buckley

Collaboration


Dive into the Greg Parsonage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Filer

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mike Salmon

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Karim Raza

Queen Elizabeth Hospital Birmingham

View shared research outputs
Top Co-Authors

Avatar

Oliver Haworth

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Burman

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet M. Lord

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lee Machado

University of Leicester

View shared research outputs
Researchain Logo
Decentralizing Knowledge