Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg R. Kruger is active.

Publication


Featured researches published by Greg R. Kruger.


Weed Technology | 2009

U.S. Grower Views on Problematic Weeds and Changes in Weed Pressure in Glyphosate-Resistant Corn, Cotton, and Soybean Cropping Systems

Greg R. Kruger; William G. Johnson; Stephen C. Weller; Micheal D. K. Owen; David R. Shaw; John W. Wilcut; David L. Jordan; Robert G. Wilson; Mark L. Bernards; Bryan G. Young

Abstract Corn and soybean growers in Illinois, Indiana, Iowa, Mississippi, Nebraska, and North Carolina, as well as cotton growers in Mississippi and North Carolina, were surveyed about their views on changes in problematic weeds and weed pressure in cropping systems based on a glyphosate-resistant (GR) crop. No growers using a GR cropping system for more than 5 yr reported heavy weed pressure. Over all cropping systems investigated (continuous GR soybean, continuous GR cotton, GR corn/GR soybean, GR soybean/non-GR crop, and GR corn/non-GR crop), 0 to 7% of survey respondents reported greater weed pressure after implementing rotations using GR crops, whereas 31 to 57% felt weed pressure was similar and 36 to 70% indicated that weed pressure was less. Pigweed, morningglory, johnsongrass, ragweed, foxtail, and velvetleaf were mentioned as their most problematic weeds, depending on the state and cropping system. Systems using GR crops improved weed management compared with the technologies used before the adoption of GR crops. However, the long-term success of managing problematic weeds in GR cropping systems will require the development of multifaceted integrated weed management programs that include glyphosate as well as other weed management tactics. Nomenclature: Glyphosate; foxtail, Setaria spp.; johnsongrass, Sorghum halepense (L.) Pers.; morningglory, Ipomoea spp.; pigweed, Amaranthus spp.; ragweed, Ambrosia spp.; velvetleaf, Abutilon theophrasti Medik.; corn, Zea mays L.; cotton, Gossypium hirsutum L; soybean, Glycine max (L.) Merr


Plant Physiology | 2013

Introgression of Novel Traits from a Wild Wheat Relative Improves Drought Adaptation in Wheat

Dante Placido; Malachy T. Campbell; Jing J. Folsom; Xinping Cui; Greg R. Kruger; P. Stephen Baenziger; Harkamal Walia

Agropyron elongatum introgression into bread wheat (Triticum aestivum) improves root traits for drought adaptation. Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.


Weed Science | 2012

A Waterhemp (Amaranthus tuberculatus) Population Resistant to 2,4-D

Mark L. Bernards; Roberto J. Crespo; Greg R. Kruger; Roch E. Gaussoin; Patrick J. Tranel

Abstract A waterhemp population from a native-grass seed production field in Nebraska was no longer effectively controlled by 2,4-D. Seed was collected from the site, and dose-response studies were conducted to determine if this population was herbicide resistant. In the greenhouse, plants from the putative resistant and a susceptible waterhemp population were treated with 0, 18, 35, 70, 140, 280, 560, 1,120, or 2,240 g ae ha−1 2,4-D. Visual injury estimates (I) were made 28 d after treatment (DAT), and plants were harvested and dry weights (GR) measured. The putative resistant population was approximately 10-fold more resistant to 2,4-D (R∶S ratio) than the susceptible population based on both I50 (50% visual injury) and GR50 (50% reduction in dry weight) values. The R∶S ratio increased to 19 and 111 as the data were extrapolated to I90 and GR90 estimates, respectively. GR50 doses of 995 g ha−1 for the resistant and 109 g ha−1 for the susceptible populations were estimated. A field dose-response study was conducted at the suspected resistant site with 2,4-D doses of 0, 140, 280, 560, 1,120, 2,240, 4,480, 8,960, 17,920, and 35,840 g ha−1. At 28 DAT, visual injury estimates were 44% in plots treated with 35,840 g ha−1. Some plants treated with the highest rate recovered and produced seed. Plants from the resistant and susceptible populations were also treated with 0, 9, 18, 35, 70, 140, 280, 560, or 1,120 g ae ha−1 dicamba in greenhouse bioassays. The 2,4-D resistant population was threefold less sensitive to dicamba based on I50 estimates but less than twofold less sensitive based on GR50 estimates. The synthetic auxins are the sixth mechanism-of-action herbicide group to which waterhemp has evolved resistance. Nomenclature: 2,4-D; dicamba; waterhemp, Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea and Tardif AMATU.


Pest Management Science | 2011

Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations

Danman Zheng; Greg R. Kruger; Sukhvinder Singh; Vince M. Davis; Patrick J. Tranel; Stephen C. Weller; William G. Johnson

BACKGROUND Horseweed is a weed commonly found in agronomic crops, waste areas and roadsides. Resistance to ALS-inhibiting herbicides in horseweed was first reported in 1993 in a population from Israel. Resistance to ALS-inhibiting herbicides in horseweed is now widespread, but, as of now, the resistance mechanism has not been reported. RESULTS Two of three populations evaluated (P116 and P13) were found to be uniform for resistance (>98% of individuals survived 8.8 g AI ha(-1) of cloransulam), whereas a third population, P525, contained about 85% resistant individuals. Cross-resistance to cloransulam, chlorimuron, imazethapyr and bispyribac was observed in the P116 population. P525 and P13 were both sensitive to imazethapyr but resistant to chlorimuron, imazethapyr and bispyribac. Enzyme activity assays indicated that resistance in P13 was due to an altered target site. Southern blot analysis indicated that the ALS target site is encoded by a single copy gene. Overlapping ALS gene regions were amplified and sequenced from each population. Amino acid substitutions of Ser for Pro at position 197 (P197S) was detected from P13, Ala for Pro (P197A) was identified from P525 and substitution of Glu for Asp (D376E) at position 376 was found in P116. Molecular markers were developed to differentiate between wild-type and resistant codons at positions 197 and 376 of horseweed ALS. CONCLUSION Resistance to ALS-inhibiting herbicides in horseweed is conferred by target-site mutations that have also been identified in other weed species. Identification of the mutations within horseweed ALS gene sequence enables molecular assays for rapid detection and resistance diagnosis.


Weed Science | 2009

Growth and seed production of horseweed (Conyza canadensis) populations resistant to glyphosate, ALS-inhibiting, and multiple (glyphosate+ALS-inhibiting) herbicides.

Vince M. Davis; Greg R. Kruger; Jeff M. Stachler; Mark M. Loux; William G. Johnson

Abstract Horseweed populations with mixtures of biotypes resistant to glyphosate and acetolactate synthase (ALS)–inhibiting herbicides as well as biotypes with multiple resistance to glyphosate + ALS-inhibiting herbicides have been documented in Indiana and Ohio. These biotypes are particularly problematic because ALS-inhibiting herbicides are commonly tank mixed with glyphosate to improve postemergence horseweed control in soybean. The objective of this research was to characterize the growth and seed production of horseweed populations with resistance to glyphosate or ALS-inhibiting herbicides, and multiple resistance to glyphosate + ALS-inhibiting herbicides. A four-herbicide by four-horseweed population factorial field experiment was conducted in the southeastern region of Indiana in 2007 and repeated in 2008. Four horseweed populations were collected from Indiana or Ohio and confirmed resistant to glyphosate, ALS inhibitors, both, or neither in greenhouse experiments. The four herbicide treatments were untreated, 0.84 kg ae ha−1 glyphosate, 35 g ai ha−1 cloransulam, and 0.84 kg ae ha−1 glyphosate + 35 g ai ha−1 cloransulam. Untreated plants from horseweed populations that were resistant to glyphosate, ALS-inhibiting, or multiple glyphosate + ALS-inhibiting herbicides produced similar amounts of biomass and seed compared to populations that were susceptible to those herbicides or combination of herbicides. Furthermore, aboveground shoot mass and seed production did not differ between treated and untreated plants. Nomenclature: Cloransulam; glyphosate; horseweed, Conyza canadensis L. ERICA; soybean, Glycine max L. Merr.


Weed Technology | 2014

Confirmation and Control of Triazine and 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicide-Resistant Palmer Amaranth (Amaranthus palmeri) in Nebraska

Amit J. Jhala; Lowell D. Sandell; Neha Rana; Greg R. Kruger; Stevan Z. Knezevic

Abstract Palmer amaranth is a difficult-to-control broadleaf weed that infests corn and soybean fields in south-central and southwestern Nebraska and several other states in the United States. The objectives of this research were to confirm triazine and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide-resistant Palmer amaranth in Nebraska and to determine sensitivity and efficacy of POST-applied corn herbicides for control of resistant and susceptible Palmer amaranth biotypes. Seeds from a putative HPPD-resistant Palmer amaranth biotype from Fillmore County, NE were collected from a seed corn production field in fall 2010. The response of Palmer amaranth biotypes to 12 rates (0 to 12×) of mesotrione, tembotrione, topramezone, and atrazine was evaluated in a dose–response bioassay in a greenhouse. On the basis of the values at the 90% effective dose (ED90) level, the analysis showed a 4- to 23-fold resistance depending upon the type of HPPD-inhibiting herbicide being investigated and susceptible biotype used for comparison. This biotype also had a 9- to 14-fold level of resistance to atrazine applied POST. Results of a POST-applied herbicide efficacy study suggested a synergistic interaction between atrazine and HPPD-inhibiting herbicides that resulted in > 90% control of all Palmer amaranth biotypes. The resistant biotype had a reduced sensitivity to acetolactate synthase inhibiting herbicides (halosulfuron and primisulfuron), a photosystem-II inhibitor (bromoxynil), and a protoporphyrinogen oxidase inhibitor (fluthiacet-methyl). Palmer amaranth biotypes were effectively controlled (≥ 90%) with glyphosate, glufosinate, and dicamba, whereas 2,4-D ester provided 81 to 83% control of the resistant biotype and > 90% control of both susceptible biotypes. Nomenclature: 2,4-D; atrazine; bromoxynil; dicamba, fluthiacet-methyl; glufosinate; glyphosate; halosulfuron-methyl; lactofen; mesotrione; primisulfuron-methyl; pyrasulfotole; tembotrione; thiencarbazone-methyl; topramezone; Palmer amaranth, Amaranthus palmeri S. Wats; corn, Zea mays L; soybean, Glycine max (L.) Merr. Resumen Amaranthus palmeri es una maleza de hoja ancha difícil de controlar que infesta campos de maíz y soya en el centro y oeste del sur de Nebraska y en varios otros estados en los Estados Unidos. Los objetivos de esta investigación fueron confirmar la existencia de A. palmeri resistente a triazine y herbicidas inhibidores de 4-hydroxyphenylpyruvate dioxygenase (HPPD) en Nebraska y determinar la sensibilidad y la eficacia de herbicidas para maíz aplicados POST para el control de biotipos de A. palmeri susceptibles y resistentes. Semillas de A. palmeri con resistencia putativa a HPPD provenientes del condado Fillmore, NE fueron colectadas de un campo de producción de maíz en el otoño de 2010. La respuesta de los biotipos de A. palmeri a 12 dosis (0 a 12×) de mesotrione, tembotrione, topramezone, y atrazine fue evaluada en un bioensayo de respuesta a dosis en un invernadero. Con base en los valores del nivel de dosis efectiva de 90%, los análisis mostraron una resistencia de 4 a 23 veces mayor dependiendo del tipo de herbicida inhibidor de HPPD investigado y del biotipo susceptible usado como comparación. Este biotipo también tuvo un nivel de resistencia a atrazine POST de 9 a 14 veces mayor. Los resultados del estudio de eficacia de herbicidas aplicados POST sugirieron una interacción sinérgica entre atrazine y herbicidas inhibidores de HPPD que resultó en >90% de control de todos los biotipos de A. palmeri. El biotipo resistente tuvo una sensibilidad reducida a herbicidas inhibidores de acetolactate synthase (halosulfuron y primisulfuron), a un inhibidor del fotosistema II (bromoxynil) y a un inhibidor de protoporphyrinogen oxidase (fluthiacet-methyl). Los biotipos de A. palmeri fueron controlados efectivamente (≥90%) con glyphosate, glufosinate, y dicamba, mientras que 2,4-D ester brindó un control de 81 a 83% del biotipo resistente y >90% de los dos biotipos susceptibles.


Weed Science | 2008

Characterization of Selected Common Lambsquarters (Chenopodium album) Biotypes with Tolerance to Glyphosate

Andrew M. Westhoven; Greg R. Kruger; Corey K. Gerber; Jeff M. Stachler; Mark M. Loux; William G. Johnson

Abstract Biotypes of common lambsquarters with tolerance to glyphosate have been identified in a number of states, but little is known about their fitness characteristics. Field and greenhouse studies were conducted to characterize the response of selected glyphosate-tolerant common lambsquarters biotypes to glyphosate, and also their biological and reproductive characteristics. In a greenhouse dose-response study, GR50 and GR90 values for four tolerant biotypes ranged from 1.48 to 3.22 and 8.73 to 18.7 kg ae ha−1, respectively, compared to 0.57 and 2.39 kg ae ha−1, respectively, for a glyphosate-sensitive biotype. In a field dose-response study, the GR50 and GR90 values were 0.06 and 0.48 kg ae ha−1, respectively, for a tolerant biotype, compared to 0.036 and 0.19 kg ae ha−1, respectively, for the sensitive biotype. The growth rate, time until flowering, and seed production of eight tolerant and two sensitive biotypes was evaluated in a field study. The tolerant biotypes grew taller, amassed more leaf area and dry weight, and advanced through growth stages more rapidly than sensitive biotypes during the early portion of the growing season. The tolerant biotypes were taller than sensitive biotypes at 6 and 10 wk after transplanting, but had lower dry weight at maturity. Tolerant biotypes initiated flower primordia approximately 6 to 8 wk after transplanting, whereas sensitive biotypes required 12 wk. However, no apparent fitness penalties were observed in glyphosate-tolerant biotypes based on seed-production estimates. Nomenclature: Glyphosate; common lambsquarters, Chenopodium album L.


Weed Technology | 2010

Control of Horseweed (Conyza canadensis) with Growth Regulator Herbicides

Greg R. Kruger; Vince M. Davis; Stephen C. Weller; William G. Johnson

Abstract The growth regulator herbicides 2,4-D and dicamba are used to control glyphosate-resistant horseweed before crops are planted. With the impending release of 2,4-D–resistant and dicamba-resistant crops, use of these growth regulator herbicides postemergence will likely increase. The objective of this study was to determine the effectiveness of various growth regulators on Indiana horseweed populations. A greenhouse dose–response study was conducted to evaluate the effectiveness of 2,4-D ester, diglycolamine salt of dicamba, and dimethylamine salt of dicamba on control of four populations of horseweed in the greenhouse. Population 66 expressed twofold levels of tolerance to 2,4-D ester and diglycolamine salt of dicamba. Population 43 expressed an enhanced level of tolerance to diglycolamine salt of dicamba but not to the other herbicides. Diglycolamine salt of dicamba provided the best overall control of populations 3 and 34. Additionally, a field study was conducted to evaluate standard use rates of 2,4-D amine, 2,4-D ester, diglycolamine salt of dicamba, and dimethylamine salt of dicamba on control of various sized glyphosate-resistant horseweed plants. Control of plants 30 cm or less in height was 90% or greater for all four herbicides. On plants greater than 30 cm tall, diglycolamine salt of dicamba provided 97% control while 2,4-D amine provided 81% control. Diglycolamine salt of dicamba provided the highest level of control of glyphosate-resistant horseweed, followed by dimethylamine salt of dicamba, 2,4-D ester and 2,4-D amine, respectively. This research demonstrates that horseweed populations respond differently to the various salts of 2,4-D and dicamba, and it will be important to determine the appropriate use rates of each salt to control glyphosate-resistant horseweed. Nomenclature: 2,4-D; dicamba; glyphosate; horseweed, Conyza canadensis (L.) Cronq. ERICA.


Weed Science | 2008

Response and Survival of Rosette-Stage Horseweed (Conyza canadensis) after Exposure to 2,4-D

Greg R. Kruger; Vince M. Davis; Stephen C. Weller; William G. Johnson

Abstract 2,4-D is often used as a preplant burndown herbicide to help control horseweed and other broadleaf weeds before planting in no-till corn and soybean production. Isolated instances of poor horseweed control have occurred in production fields. The objective of this research was to evaluate the response of various horseweed populations to 2,4-D. In the first study, 478 horseweed populations from Indiana were subjected to 280 g ae ha−1 of 2,4-D amine in the greenhouse. This rate of 2,4-D caused visible injury and prevented all biotypes from forming new leaves for 28 days. There were specific populations where all plants sprayed were alive at 28 days after treatment (DAT), and approximately 10% of all populations had a least one plant that survived 280 g ae ha−1 2,4-D, resumed growth, and produced seed. In a dose-response study, we observed populations with three-fold more tolerance to 2,4-D. The most tolerant population had a GR90 of 513 g ae ha−1 and the most susceptible population had a GR90 of 121 g ae ha−1 based on dry weights. Growth suppression with 2,4-D was not affected by rosette size for rosettes between 0.5 and 10 cm in width. Nomenclature: 2,4-D; horseweed, Conyza canadensis (L.) Cronq. ERICA; corn, Zea mays L.; soybean, Glycine max (L.) Merr.


Weed Technology | 2010

Fall and Spring Preplant Herbicide Applications Influence Spring Emergence of Glyphosate-Resistant Horseweed (Conyza canadensis)

Vince M. Davis; Greg R. Kruger; Bryan G. Young; William G. Johnson

Abstract Horseweed (Conyza canadensis) is a common weed in no-till crop production systems. It is problematic because of the frequent occurrence of biotypes resistant to glyphosate and acetolactate synthase (ALS)-inhibiting herbicides and its ability to complete its life cycle as a winter or summer annual weed. Tactics to control horseweed while controlling other winter annual weeds routinely fail; herbicide application timing and spring emergence patterns of horseweed may be responsible. The objectives of this experiment were to (1) determine the influence of fall and spring herbicides with and without soil residual horseweed activity on spring-emerging glyphosate-resistant (GR) horseweed density and (2) evaluate the efficacy and persistence of saflufenacil on GR horseweed. Field studies were conducted in southern Indiana and Illinois from fall 2006 to summer 2007 and repeated in 2007 to 2008. Six preplant herbicide treatments were applied at four application timings: early fall, late fall, early spring, and late spring. Horseweed plants were counted every 2 wk following the first spring application until the first week of July. Horseweed almost exclusively emerged in the spring at both locations. Spring horseweed emergence was higher when 2,4-D + glyphosate was fall-applied and controlled other winter annual weeds. With fall-applied 2,4-D + glyphosate, over 90% of the peak horseweed density was observed before April 25. In contrast, only 25% of the peak horseweed density was observed in the untreated check by April 25. Starting from the initiation of horseweed emergence in late March, chlorimuron + tribenuron applied early fall or early spring, and spring-applied saflufenacil at 100 g ai/ha provided greater than 90% horseweed control for 12 wk. Early spring–applied saflufenacil at 50 g ai/ha provided 8 wk of greater than 90% residual control, and early spring–applied simazine provided 6 wk of greater than 90% control. When applied in late spring, saflufenacil was the only herbicide treatment that reduced horseweed densities by greater than 90% compared to 2,4-D + glyphosate. We concluded from this research that fall applications of nonresidual herbicides can increase the rate and density of spring emerging horseweed. In addition, spring-applied saflufenacil provides no-till producers with a new preplant herbicide for foliar and residual control of glyphosate- and ALS-resistant horseweed. Nomenclature: Chlorimuron; glyphosate; saflufenacil; simazine; tribenuron; 2,4-D ester; horseweed, Conyza canadensis L. ERICA

Collaboration


Dive into the Greg R. Kruger's collaboration.

Top Co-Authors

Avatar

Ryan S. Henry

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley K. Fritz

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Vince M. Davis

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipak K. Santra

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit J. Jhala

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge