Greg Solomon
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Greg Solomon.
Molecular and Cellular Biology | 1996
G A Preston; T T Lyon; Y Yin; J E Lang; Greg Solomon; L Annab; D G Srinivasan; D A Alcorta; Barrett Jc
The role of c-Fos in apoptosis was examined in two Syrian hamster embryo cell lines (sup+I and sup-II) and a human colorectal carcinoma cell line (RKO), using the chimeric Fos-estrogen receptor fusion protein c-FosER. As previously reported, contrasting responses were observed when these two cell lines were placed under growth factor deprivation conditions; sup+I cells were highly susceptible to apoptosis, whereas sup-II cells were resistant. In this report, we show that the activated c-FosER protein induces apoptosis in sup-II preneoplastic cells in serum-free medium, indicating that c-Fos protein can induce apoptotic cell death in these cells. c-Fos-induced apoptosis was not blocked by the protein synthesis inhibitor cycloheximide, suggesting that the c-Fos transcriptional activation activity is not involved. This conclusion was further supported by the observation that overexpression of v-Fos, which is highly proficient in transcriptional activation but deficient in the transcriptional repression activity associated with c-Fos, did not induce apoptosis. Constitutively expressed Bcl-2 delayed the onset of low-serum-induced apoptosis in sup+I cells and enhanced survival in sup-II cells. Further, coexpression of Bcl-2 and c-FosER in sup+I or sup-II cells protected the cells from c-FosER-induced apoptosis. The possibility that c-FosER-induced apoptosis requires a p53 function was examined. Colorectal carcinoma RKOp53+/+ cells, which do not normally undergo apoptosis in serum-free medium, showed apoptotic DNA fragmentation upon expression and activation of c-FosER. Further, when the wild-type p53 protein was diminished in the RKO cells by infection with the papillomavirus E6 gene, subsequent c-FosER-induced apoptosis was blocked. The data suggest that c-Fos protein plays a causal role in the activation of apoptosis in a p53-dependent manner. This activity does not require new protein synthesis and is blocked by overexpression of Bcl-2 protein.
Oncogene | 2002
Sun-Hee Leem; J Arturo Londoño-Vallejo; Jung-Hyun Kim; Hung Bui; Emmanuel Tubacher; Greg Solomon; Jung-Eun Park; Izumi Horikawa; Natalay Kouprina; J. Carl Barrett; Vladimir Larionov
In this work, the full-length hTERT gene was isolated and the sequence of the previously unknown region in intron 6 as well as that of upstream and downstream hTERT regions was determined. We have shown that intron 6 includes a variable number of tandem repeats (VNTR) of a 38 bp sequence, (hTERT-VNTR 6-1). Eight alleles of hTERT-VNTR 6-1 were identified among 103 unrelated individuals, ranging from 27 to 47 repeats. hTERT-VNTR 2-2 is another new 61 bp minisatellite repeat found in intron 2 of hTERT. At least four alleles of hTERT-VNTR 2-2 can be distinguished. Previous studies have described polymorphisms for minisatellites hTERT-VNTR 2-1, a 42 bp repeat in intron 2, and hTERT-VNTR 6-2, a 36 bp repeat in intron 6. These, together with another minisatellite found in intron 12, add up to five such structures within the hTERT gene. The segregation of hTERT minisatellites was analysed in families, revealing that the VNTRs are transmitted through meiosis following a Mendelian inheritance. Minisatellites in hTERT were also analysed in matching normal and cancer tissues from patients with tumors; in one patient with a kidney tumor, the two VNTRs in intron 6 had undergone concomitant rearrangements. This observation suggests that chromosomal rearrangements implicating these VNTRs may be associated with the activation of telomerase expression in cancer cells.
EMBO Reports | 2003
Natalay Kouprina; Sun-Hee Leem; Greg Solomon; Albert Ly; Maxim Koriabine; John Otstot; Eugene Pak; Amalia Dutra; Shaying Zhao; J. Carl Barrett; Vladimir Larionov
The reported draft human genome sequence includes many contigs that are separated by gaps of unknown sequence. These gaps may be due to chromosomal regions that are not present in the Escherichia coli libraries used for DNA sequencing because they cannot be cloned efficiently, if at all, in bacteria. Using a yeast artificial chromosome (YAC)/ bacterial artificial chromosome (BAC) library generated in yeast, we found that approximately 6% of human DNA sequences tested transformed E. coli cells less efficiently than yeast cells, and were less stable in E. coli than in yeast. When the ends of several YAC/BAC isolates cloned in yeast were sequenced and compared with the reported draft sequence, major inconsistencies were found with the sequences of those YAC/BAC isolates that transformed E. coli cells inefficiently. Two human genomic fragments were re‐isolated from human DNA by transformation‐associated recombination (TAR) cloning. Re‐sequencing of these regions showed that the errors in the draft are the results of both missassembly and loss of specific DNA sequences during cloning in E. coli. These results show that TAR cloning might be a valuable method that could be widely used during the final stages of the Human Genome Project.
Molecular Carcinogenesis | 1996
Lori A. Terry; Jeff Boyd; David Alcorta; Tracy Lyon; Greg Solomon; Greg Hannon; Andrew Berchuck; David Beach; J. Carl Barrett
p21/WAF1/CIP1/SDI1 is an important cell‐cycle mediator with tumor suppressor gene capabilities, and its inactivation could potentially lead to tumor progression. Because tumor suppressor genes are commonly inactivated by somatic and germline mutations, we analyzed a variety of human tumor cell lines for p21 mutations. We used single‐strand conformational analysis and direct sequencing to identify possible mutations in the p21 coding region. Two base‐alterations were observed in 41 immortalized human tumor cell lines. A previously reported polymorphism that results in a serine‐to‐arginine amino‐acid substitution at codon 31 was found in 24% (10 of 41) of the tumor cell lines but was also found in 10% (six of 62) of normal parental DNAs tested and 7% (three of 43) of normal DNAs from patients with primary endometrial tumors. Another nucleotide substitution found at codon 80 resulted in the replacement of threonine with methionine. Codon 80 changes were found in 7% (three of 41) of the tumor cell lines (all endometrial) and in 2% (one of 62) of the normal parental DNAs.
Gene | 2000
Lois A. Annab; Natalya Kouprina; Greg Solomon; P. LouAnn Cable; David E. Hill; J. Carl Barrett; Vladimir Larionov; Cynthia A. Afshari
The BRCA1 gene, mutations of which contribute significantly to hereditary breast cancer, was not identified in the existing YAC and BAC libraries. The gene is now available only as a set of overlapping fragments that form a contig. In this work we describe direct isolation of a genomic copy of BRCA1 from human DNA by transformation-associated recombination (TAR) cloning. Despite the presence of multiple repeats, most of the primary BRCA1 YAC isolates did not contain detectable deletions and could be stably propagated in a host strain with conditional RAD52. Similar to other circular YACs, approximately 90kb BRCA1 YACs were efficiently and accurately retrofitted into bacterial artificial chromosomes (BACs) with the Neo(R) mammalian selectable marker and transferred as circular BAC/YACs in E. coli cells. The BRCA1 BAC/YAC DNAs were isolated from bacterial cells and were used to transfect mouse cells using the Neo(R) gene as selectable marker. Western blot analysis of transfectants showed that BRCA1 YACs isolated by a TAR cloning contained a functional gene. The advantage of this expression vector is that the expression of BRCA1 is generated from its own regulatory elements and does not require additional promoter elements that may result in overexpression of the protein. In contrast to the results with cDNA expression vectors, the level of BRCA1 expression from this TAR vector is stable, does not induce cell death, maintains serum regulation, and approximates the level of endogenously expressed BRCA1 in human cells. The entire isolation procedure of BRCA1 described in this paper can be accomplished in approximately 10 days and can be applied to isolation of gene from clinical material. We propose that the opportunity to directly isolate normal and mutant forms of BRCA1 will greatly facilitate analysis of the gene and its contribution to breast cancer.
Breast Cancer Research | 2000
Lois A. Annab; Rebecca E Hawkins; Greg Solomon; J. Carl Barrett; Cynthia A. Afshari
Statement of findingsWe tested the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as the inhibition of ovarian cell proliferation. Introduction of BRCA1 antisense retroviral constructs into BG-1 estrogen-dependent ovarian adenocarcinoma cells resulted in reduced BRCA1 expression. BRCA1 antisense pooled populations and derived subclones were able to proliferate in monolayer culture without estrogen, whereas control cells began to die after 10 days of estrogen deprivation. In addition, both populations and subclones of BRCA1 antisense infected cells demonstrated a growth advantage in monolayer culture in the presence of estrogen and were able to proliferate in monolayer culture without estrogen, while control cells did not. Furthermore, clonal studies demonstrated that reduced levels of BRCA1 protein correlated with growth in soft agar and greater tumor formation in nude mice in the absence of estrogen. These data suggest that reduction of BRCA1 protein in BG-1 ovarian adenocarcinoma cells may have an effect on cell survival during estrogen deprivation both in vitro and in vivo.
Journal of Molecular Evolution | 2003
Vladimir N. Noskov; Sun-Hee Leem; Greg Solomon; Michael Mullokandov; Ji-Youn Chae; Young-Ho Yoon; Young-Sun Shin; Natalay Kouprina; Vladimir Larionov
Transformation-associated recombination (TAR) cloning allows selective isolation of a desired chromosomal region or gene from complex genomes. The method exploits a high level of recombination between homologous DNA sequences during transformation in the yeast Saccharomyces cerevisiae. We investigated the effect of nonhomology on the efficiency of gene capture and found that up to 15% DNA divergence did not prevent efficient gene isolation. Such tolerance to DNA divergence greatly expands the potential applications of TAR cloning for comparative genomics. In this study, we were able to use the technique to isolate nonidentical chromosomal duplications and gene homologues.
Human Molecular Genetics | 2005
Natalay Kouprina; Adam Pavlicek; N. Keith Collins; Megumi Nakano; Vladimir N. Noskov; Jun Ichirou Ohzeki; Ganeshwaran H. Mochida; John I. Risinger; Paul Goldsmith; Michelle Gunsior; Greg Solomon; William Gersch; Jung-Hyun Kim; J. Carl Barrett; Christopher A. Walsh; Jerzy Jurka; Hiroshi Masumoto; Vladimir Larionov
Nucleic Acids Research | 2003
Natalya Kouprina; T. Ebersole; M. Koriabine; E. Pak; I. B. Rogozin; M. Katoh; M. Oshimura; K. Ogi; M. Peredelchuk; Greg Solomon; W. Brown; Barrett Jc; Vladimir Larionov
Proceedings of the National Academy of Sciences of the United States of America | 2004
Natalay Kouprina; Michael Mullokandov; Igor B. Rogozin; N. Keith Collins; Greg Solomon; John Otstot; John I. Risinger; Eugene V. Koonin; J. Carl Barrett; Vladimir Larionov