Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg W. Dicinoski is active.

Publication


Featured researches published by Greg W. Dicinoski.


Hydrometallurgy | 2003

Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)

Andrew C. Grosse; Greg W. Dicinoski; Matthew J. Shaw; Paul R. Haddad

A review is presented summarising the leaching of gold with ammoniacal thiosulfate solutions, and evaluating the current use and development of ion exchange resins for the recovery of gold and silver from such leach liquors. Comparisons are also made with other recovery processes, including carbon adsorption, solvent extraction, electrowinning and precipitation. Thiosulfate leaching chemistry is compared with cyanide leaching, and the problems associated with obtaining a high yield of recovered gold using the former process are discussed. The present limitations of using Resin-in-Pulp (RIP) and Resin-in-Leach (RIL) systems with thiosulfate liquors are indicated and possible solutions discussed.


Electrophoresis | 2008

Identification of inorganic ions in post-blast explosive residues using portable CE instrumentation and capacitively coupled contactless conductivity detection.

Joseph P. Hutchinson; Cameron Johns; Michael C. Breadmore; Emily F. Hilder; Rosanne M. Guijt; Chris Lennard; Greg W. Dicinoski; Paul R. Haddad

Novel CE methods have been developed on portable instrumentation adapted to accommodate a capacitively coupled contactless conductivity detector for the separation and sensitive detection of inorganic anions and cations in post‐blast explosive residues from homemade inorganic explosive devices. The methods presented combine sensitivity and speed of analysis for the wide range of inorganic ions used in this study. Separate methods were employed for the separation of anions and cations. The anion separation method utilised a low conductivity 70 mM Tris/70 mM CHES aqueous electrolyte (pH 8.6) with a 90 cm capillary coated with hexadimethrine bromide to reverse the EOF. Fifteen anions could be baseline separated in 7 min with detection limits in the range 27–240 μg/L. A selection of ten anions deemed most important in this application could be separated in 45 s on a shorter capillary (30.6 cm) using the same electrolyte. The cation separation method was performed on a 73 cm length of fused‐silica capillary using an electrolyte system composed of 10 mM histidine and 50 mM acetic acid, at pH 4.2. The addition of the complexants, 1 mM hydroxyisobutyric acid and 0.7 mM 18‐crown‐6 ether, enhanced selectivity and allowed the separation of eleven inorganic cations in under 7 min with detection limits in the range 31–240 μg/L. The developed methods were successfully field tested on post‐blast residues obtained from the controlled detonation of homemade explosive devices. Results were verified using ion chromatographic analyses of the same samples.


Journal of Chromatography A | 2008

Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues

Cameron Johns; Robert A. Shellie; Oscar G. Potter; Jw O'Reilly; Joseph P. Hutchinson; Rosanne M. Guijt; Michael C. Breadmore; Emily F. Hilder; Greg W. Dicinoski; Paul R. Haddad

Anions and cations of interest for the post-blast identification of homemade inorganic explosives were separated and detected by ion chromatographic (IC) methods. The ionic analytes used for identification of explosives in this study comprised 18 anions (acetate, benzoate, bromate, carbonate, chlorate, chloride, chlorite, chromate, cyanate, fluoride, formate, nitrate, nitrite, perchlorate, phosphate, sulfate, thiocyanate and thiosulfate) and 12 cations (ammonium, barium(II), calcium(II), chromium(III), ethylammonium, magnesium(II), manganese(II), methylammonium, potassium(I), sodium(I), strontium(II), and zinc(II)). Two IC separations are presented, using suppressed IC on a Dionex AS20 column with potassium hydroxide as eluent for anions, and non-suppressed IC for cations using a Dionex SCS 1 column with oxalic acid/acetonitrile as eluent. Conductivity detection was used in both cases. Detection limits for anions were in the range 2-27.4ppb, and for cations were in the range 13-115ppb. These methods allowed the explosive residue ions to be identified and separated from background ions likely to be present in the environment. Linearity (over a calibration range of 0.05-50ppm) was evaluated for both methods, with r(2) values ranging from 0.9889 to 1.000. Reproducibility over 10 consecutive injections of a 5ppm standard ranged from 0.01 to 0.22% relative standard deviation (RSD) for retention time and 0.29 to 2.16%RSD for peak area. The anion and cation separations were performed simultaneously by using two Dionex ICS-2000 chromatographs served by a single autoinjector. The efficacy of the developed methods was demonstrated by analysis of residue samples taken from witness plates and soils collected following the controlled detonation of a series of different inorganic homemade explosives. The results obtained were also confirmed by parallel analysis of the same samples by capillary electrophoresis (CE) with excellent agreement being obtained.


Analytica Chimica Acta | 2001

Chromatographic and electrophoretic separation of inorganic sulfur and sulfur–oxygen species

Jw O'Reilly; Greg W. Dicinoski; Matthew J. Shaw; Paul R. Haddad

A review is presented of the use of chromatographic and electrophoretic methods for the separation of inorganic sulfur species in aqueous matrices, with particular emphasis on ion chromatographic methods. The species considered are elemental sulfur, sulfide, polysulfides (Sx2−), sulfite, sulfate, thiosulfate, dithionate, polythionates (SxO62−) and metal–thiosulfate complexes. A brief introduction to sulfur anion chemistry is given, followed by a discussion of the separation and determination of sulfur species using ion chromatography, capillary electrophoresis and other separation-based techniques. Difficulties inherent in the analysis of complex sulfur anion mixtures are indicated and the procedures that have been used to overcome these difficulties are also examined.


Analytica Chimica Acta | 2013

On-line simultaneous and rapid separation of anions and cations from a single sample using dual-capillary sequential injection-capillary electrophoresis

Adam J. Gaudry; Rosanne M. Guijt; Mirek Macka; Joseph P. Hutchinson; Cameron Johns; Emily F. Hilder; Greg W. Dicinoski; Pavel N. Nesterenko; Paul R. Haddad; Michael C. Breadmore

A novel capillary electrophoresis (CE) approach has been developed for the simultaneous rapid separation and identification of common environmental inorganic anions and cations from a single sample injection. The method utilised a sequential injection-capillary electrophoresis instrument (SI-CE) with capacitively-coupled contactless conductivity detection (C(4)D) constructed in-house from commercial-off-the-shelf components. Oppositely charged analytes from a single sample plug were simultaneously injected electrokinetically onto two separate capillaries for independent separation and detection. Injection was automated and may occur from a syringe or be directly coupled to an external source in a continuous manner. Software control enabled high sample throughput (17 runs per hour for the target analyte set) and the inclusion of an isolation valve allowed the separation capillaries to be flushed, increasing throughput by removing slow migrating species as well as improving repeatability. Various environmental and industrial samples (subjected only to filtering) were analysed in the laboratory with a 3 min analysis time which allowed the separation of 23 inorganic and small organic anions and cations. Finally, the system was applied to an extended automated analysis of Hobart Southern Water tap water for a period of 48 h. The overall repeatability of the migration times of a 14 analyte standard sample was less than 0.74% under laboratory conditions. LODs ranged from 5 to 61 μg L(-1). The combination of automation, high confidence of peak identification, and low limits of detection make this a useful system for the simultaneous identification of a range of common inorganic anions and cations for discrete or continuous monitoring applications.


Analytical Chemistry | 2011

Identification of Inorganic Improvised Explosive Devices Using Sequential Injection Capillary Electrophoresis and Contactless Conductivity Detection

Gustavo A. Blanco; Yi Heng Nai; Emily F. Hilder; Robert A. Shellie; Greg W. Dicinoski; Paul R. Haddad; Michael C. Breadmore

A simple sequential injection capillary electrophoresis (SI-CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) has been developed for the rapid separation of anions relevant to the identification of inorganic improvised explosive devices (IEDs). Four of the most common explosive tracer ions, nitrate, perchlorate, chlorate, and azide, and the most common background ions, chloride, sulfate, thiocyanate, fluoride, phosphate, and carbonate, were chosen for investigation. Using a separation electrolyte comprising 50 mM tris(hydroxymethyl)aminomethane, 50 mM cyclohexyl-2-aminoethanesulfonic acid, pH 8.9 and 0.05% poly(ethyleneimine) (PEI) in a hexadimethrine bromide (HDMB)-coated capillary it was possible to partially separate all 10 ions within 90 s. The combination of two cationic polymer additives (PEI and HDMB) was necessary to achieve adequate selectivity with a sufficiently stable electroosmotic flow (EOF), which was not possible with only one polymer. Careful optimization of variables affecting the speed of separation and injection timing allowed a further reduction of separation time to 55 s while maintaining adequate efficiency and resolution. Software control makes high sample throughput possible (60 samples/h), with very high repeatability of migration times [0.63-2.07% relative standard deviation (RSD) for 240 injections]. The separation speed does not compromise sensitivity, with limits of detection ranging from 23 to 50 μg·L(-1) for all the explosive residues considered, which is 10× lower than those achieved by indirect absorbance detection and 2× lower than those achieved by C(4)D using portable benchtop instrumentation. The combination of automation, high sample throughput, high confidence of peak identification, and low limits of detection makes this methodology ideal for the rapid identification of inorganic IED residues.


Journal of Chromatography A | 2011

Comparison of the response of four aerosol detectors used with ultra high pressure liquid chromatography.

Joseph P. Hutchinson; Jianfeng Li; William Farrell; Elizabeth Groeber; Roman Szucs; Greg W. Dicinoski; Paul R. Haddad

The responses of four different types of aerosol detectors have been evaluated and compared to establish their potential use as a universal detector in conjunction with ultra high pressure liquid chromatography (UHPLC). Two charged-aerosol detectors, namely Corona CAD and Corona Ultra, and also two different types of light-scattering detectors (an evaporative light scattering detector, and a nano-quantity analyte detector [NQAD]) were evaluated. The responses of these detectors were systematically investigated under changing experimental and instrumental parameters, such as the mobile phase flow-rate, analyte concentration, mobile phase composition, nebulizer temperature, evaporator temperature, evaporator gas flow-rate and instrumental signal filtering after detection. It was found that these parameters exerted non-linear effects on the responses of the aerosol detectors and must therefore be considered when designing analytical separation conditions, particularly when gradient elution is performed. Identical reversed-phase gradient separations were compared on all four aerosol detectors and further compared with UV detection at 200 nm. The aerosol detectors were able to detect all 11 analytes in a test set comprising species having a variety of physicochemical properties, whilst UV detection was applicable only to those analytes containing chromophores. The reproducibility of the detector response for 11 analytes over 10 consecutive separations was found to be approximately 5% for the charged-aerosol detectors and approximately 11% for the light-scattering detectors. The tested analytes included semi-volatile species which exhibited a more variable response on the aerosol detectors. Peak efficiencies were generally better on the aerosol detectors in comparison to UV detection and particularly so for the light-scattering detectors which exhibited efficiencies of around 110,000 plates per metre. Limits of detection were calculated using different mobile phase compositions and the NQAD detector was found to be the most sensitive (LOD of 10 ng/mL), followed by the Corona CAD (76 ng/mL), then UV detection at 200 nm (178 ng/mL) using an injection volume of 25 μL.


Journal of Chromatography A | 2010

Universal response model for a corona charged aerosol detector

Joseph P. Hutchinson; Jianfeng Li; William Farrell; Elizabeth Groeber; Roman Szucs; Greg W. Dicinoski; Paul R. Haddad

The universality of the response of the Corona Charged Aerosol Detector (CoronaCAD) has been investigated under flow-injection and gradient HPLC elution conditions. A three-dimensional model was developed which relates the CoronaCAD response to analyte concentration and the mobile phase composition used. The model was developed using the response of four probe analytes which displayed non-volatile behavior in the CoronaCAD and were soluble over a broad range of mobile phase compositions. The analyte concentrations ranged from 1μg/mL to 1mg/mL, and injection volumes corresponded to on-column amounts of 25ng to 25μg. Mobile phases used in the model were composed of 0-80% acetonitrile, mixed with complementary proportions of aqueous formic acid (0.1%, pH 2.6). An analyte set of 23 compounds possessing a wide range of physicochemical properties was selected for the purpose of evaluating the model. The predicted response was compared to the actual analyte response displayed by the detector and the efficacy of the model under flow-injection and gradient HPLC elution conditions was determined. The average error of the four analytes used to develop the model was 9.2% (n=176), while the errors under flow-injection and gradient HPLC elution conditions for the evaluation set of analytes were found to be 12.5% and 12.8%, respectively. Some analytes were excluded from the evaluation set due to considerations of volatility (boiling point <400°C), charge and excessive retention on the column leading to elution outside the eluent range covered by the model. The two-part response model can be used to describe the relationship between response and analyte concentration and also to offer a correction for the non-linear detector response obtained with gradient HPLC for analytes which conform to the model, to provide insight into the factors affecting the CoronaCAD response for different analytes, and also as a means for accurately determining the concentration of unknown compounds when individual standards are not available for calibration.


Analytical Letters | 2006

Forensic Identification of Inorganic Explosives by Ion Chromatography

Greg W. Dicinoski; Robert A. Shellie; Paul R. Haddad

Abstract While there is a great deal of published literature describing methods for the analysis of organic explosives by various methods, there are comparatively few publications concerning the analysis of explosives based on inorganic chemicals. This mini‐review examines the literature that is concerned with the analysis of such explosives, commonly referred to as improvised explosive devices, using ion chromatography. Pertinent details from the reviewed publications are used to highlight the strengths and weaknesses of these methods and several comparisons are also made to other analytical techniques. The general utility and limitations of the reported research for the analysis of improvised explosive devices are discussed and future directions are proposed.


Journal of Chromatography A | 2003

Mechanistic studies on the separation of cations in zwitterionic ion chromatography

Helmy A. Cook; Greg W. Dicinoski; Paul R. Haddad

Electrostatic ion chromatography, also known as zwitterionic ion chromatography, has been predominantly used for the analysis of anions. Consequently, separation mechanisms proposed for this technique have been based on anion retention data obtained using a sulfobetaine-type surfactant-coated column. A comprehensive cation retention data set has been obtained on a C18 column coated with the zwitterionic surfactant N-tetradecylphosphocholine (which has the negatively and positively charged functional groups reversed in comparison to the sulfobetaine surfactants), with mobile phases being varied systematically in the concentration and species of both the mobile-phase anion and cation. A retention mechanism based on both an ion exclusion effect and a direct (chaotropic) interaction with the inner negative charge on the zwitterion is proposed for the retention of cations. Despite the relatively low chaotropic nature of cations compared with anions, the retention data shows that cations are retained in this system predominantly due to a chaotropic interaction with the inner charge, analogous to anions in a system where the C18 column is coated with a sulfobetaine-type surfactant. The retention of an analyte cation, and the effect of the mobile-phase anion and cation, can be predicted by the relative positions of these species on the Hofmeister (chaotropic) series.

Collaboration


Dive into the Greg W. Dicinoski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily F. Hilder

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge