Gregor Aas
University of Bayreuth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregor Aas.
Journal of Chemical Ecology | 2005
Stefan Dötterl; Ulrike Füssel; Andreas Jürgens; Gregor Aas
Many bees are oligolectic and collect pollen for their larvae only from one particular plant family or genus. Here, we identified flower scent compounds of two Salix species important for the attraction of the oligolectic bee Andrena vaga, which collects pollen only from Salix. Flower scent was collected by using dynamic-headspace methods from Salix caprea and S. atrocinerea, and the samples were subsequently analyzed by coupled gas chromatographic–electroantennographic detection (GC-EAD) to detect possible attractants of A. vaga. EAD active compounds were identified by gas chromatography coupled to mass spectrometry. Both Salix species had relatively similar scent profiles, and the antennae of male and female bees responded to at least 16 compounds, among them different benzenoids as well as oxygenated monoterpenoids and sesquiterpenoids. The strongest antennal responses were triggered by 1,4-dimethoxybenzene, and in field bioassays, this benzenoid attracted females of A. vaga at the beginning of its flight period, but not at the end.
Journal of Chemical Ecology | 2007
Ulrike Füssel; Stefan Dötterl; Andreas Jürgens; Gregor Aas
The floral scent composition of 32 European and two Asian Salix L. species (Salicaceae) was analyzed. Intra- and interspecific variation was compared for a subset of 8 species. All Salix species are dioecious and floral scent was collected from both male and female individuals by using a dynamic headspace MicroSPE method, and analyzed by GC-MS. A total of 48 compounds were detected, most of them being isoprenoids and benzenoids. Commonly occurring compounds included trans-β-ocimene, cis-β-ocimene, benzaldehyde, d-limonene, α-pinene, cis-3-hexenyl aceatate, linalool, 1,4-dimethoxybenzene, and β-pinene. Two compounds, 1,4-dimethoxybenzene and trans-β-ocimene, were responsible for most of the interspecific variation. In a subset of eight extensively sampled species, six had a characteristic floral scent composition; half of the pairwise species comparisons confirmed significant differences. In three of these eight species, intraspecific variability could be explained by sex differences. Variation in Salix floral scent may provide specific signals that guide pollinators and thus contribute to the reproductive isolation of compatible and cooccurring species.
PLOS ONE | 2014
Stefan Dötterl; Ulrike Glück; Andreas Jürgens; Joseph Woodring; Gregor Aas
In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants.
Organisms Diversity & Evolution | 2014
Martin Feulner; Stefan Pointner; Lisa Heuss; Gregor Aas; Juraj Paule; Stefan Dötterl
Comparisons between floral scent-based and DNA-molecular-based taxonomies are rare, yet such comparisons indicate that scent can provide useful taxonomic information. Here, we correlate the phytochemical differentiation in floral scent to the DNA-molecular-based differentiation in the genus Sorbus. Inflorescence scent patterns of the apomictic and endemic Sorbus latifolia microspecies Sorbus franconica, Sorbus adeana, and Sorbus cordigastensis originated by hybridization as well as their parental taxa Sorbus aria agg. and Sorbus torminalis were investigated with the dynamic headspace method. The scent data (presence/absence of compounds) were used to construct an UPGMA tree, to calculate a similarity matrix, and to correlate them with the published amplified fragment length polymorphism (AFLP) data of the same individuals, populations, and taxa. Flow cytometry was used to estimate the DNA-ploidy level of the taxa. Scent analyses showed a total of 68 substances, among them aromatic compounds, terpenoids, aliphatics, and nitrogen-containing compounds. The scent patterns were taxon-specific, and the number of scent components differed among taxa. The correlations with the published AFLP data on population and individual level are highly significant, indicating that the scent and AFLP data are highly congruent in the plants studied. Scent therefore provides useful taxonomic characters in Sorbus.
Plant Systematics and Evolution | 2013
Martin Feulner; Sigrid Liede-Schumann; Ulrich Meve; Alfons Weig; Gregor Aas
The Franconian Alb (Bavaria, Germany) is rich in endemic Sorbus taxa, considered as apomictic microspecies and derived by hybridization between Sorbus aria aggregate and Sorbus torminalis (Sorbus latifolia aggregate). Molecular studies using the AFLP technique, neighbour joining, Bayesian clustering, principal coordinate analysis (PCo) and voucher studies were used to investigate genetic structure and origin of adult plants and cultivated offspring of three endemic S. latifolia taxa, namely Sorbus cordigastensis, Sorbus franconica and Sorbus adeana and probable parental species from the S. aria agg. and S. torminalis. The S. latifolia taxa, adults and progeny, showed low genetic variability and a more or less clonal structure, confirming an apomictic mode of reproduction. The investigated S. latifolia taxa were remarkably different among each other, confirming their status as microspecies. The AFLP data confirmed the hybrid origin of the S. latifolia taxa, they were 1.3–1.5 times more closely related to S. aria agg. than to S. torminalis. The S. aria agg. showed a complicate genetic structure and fell into four main groups, two intermediate groups besides Sorbus pannonica and Sorbus aria sensu stricto (S. aria s.str.). Some progeny of S. pannonica was more variable than expected and clustered partly with other groups indicating gene flow within S. aria agg. Different subgroups of the S. aria aggregate may be parental for the S. latifolia taxa, contributing to the remarkable genetic distances between them.
Scandinavian Journal of Forest Research | 2007
Patrick A. Insinna; Bernhard Götz; Risto Jalkanen; Gregor Aas
Abstract The dynamics of six different needle parameters of Pinus sylvestris L. and Pinus ponderosa Dougl. ex P. & C. Laws. were examined retrospectively for a 112-year-old mixed stand in Brandenburg, Germany, using the needle trace method. Similarities were found in needle production, needle loss and needle density. However, needle age, needle retention and total number of needles revealed significant differences between the tree species, with higher values for P. ponderosa. Pinus ponderosa yielded approximately twice as much mean whole-crown needle dry mass as P. sylvestris. Furthermore, different branching systems could be detected between the species, with both pines following “Corners rule”. The results suggest that under identical growing conditions, P. ponderosa exhibits more efficient water use and can therefore maintain a bigger crown (as the basis for increased growth) than P. sylvestris.
Biological Conservation | 2013
Marco Pautasso; Gregor Aas; Valentin Queloz; Ottmar Holdenrieder
Botanica Helvetica | 1994
Gregor Aas; Josef Maier; Matthias Baltisberger; Sabine Metzger
Journal of Biogeography | 2015
Jürgen Kreyling; Stephanie S. Schmid; Gregor Aas
Botanical Journal of the Linnean Society | 2014
Andreas Jürgens; Ulrike Glück; Gregor Aas; Stefan Dötterl